优化财团AKUC-1对甲酚生物修复的潜力:一种统计方法与基于人工智能的预测相结合

Q1 Environmental Science
Apurva Kadia, Urvish Chhaya
{"title":"优化财团AKUC-1对甲酚生物修复的潜力:一种统计方法与基于人工智能的预测相结合","authors":"Apurva Kadia,&nbsp;Urvish Chhaya","doi":"10.1016/j.biteb.2025.102342","DOIUrl":null,"url":null,"abstract":"<div><div>Biodegradation is an economically feasible, environmentally friendly, and sustainable method for removing organic pollutants from environmental matrices. This work explores the potential of consortium AKUC-1 for bioremediation of cresol isomer mixtures (ortho, meta-, and para-cresol). Microbiome profiling of the consortium revealed dominance of the phylum Firmicutes and the genus <em>Bacillus</em>. To identify key parameters and improve the degradation efficiency of cresol isomers, AKUC-1 was statistically optimized using Response Surface Methodology — Central Composite Design (RSM-CCD), with support from a machine learning tool, support vector machine (SVM). Analysis of Variance confirmed the accuracy of the RSM-CCD model, with a significant F-value of 56.76 and a <em>p</em>-value of less than 0.0001, indicating the model's robustness. Under optimal conditions, with 3.50 g L<sup>−1</sup> sucrose, 0.0075 g L<sup>−1</sup> FeCl<sub>3</sub>, and 0.0075 g L<sup>−1</sup> CaCl<sub>2</sub>, the consortium degraded 82.54 % of 600 ppm cresol isomers, which is 2.58 times higher than in unoptimized media.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"32 ","pages":"Article 102342"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing potential of consortium AKUC-1 for cresol bioremediation: A statistical approach complemented with AI-based prediction\",\"authors\":\"Apurva Kadia,&nbsp;Urvish Chhaya\",\"doi\":\"10.1016/j.biteb.2025.102342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biodegradation is an economically feasible, environmentally friendly, and sustainable method for removing organic pollutants from environmental matrices. This work explores the potential of consortium AKUC-1 for bioremediation of cresol isomer mixtures (ortho, meta-, and para-cresol). Microbiome profiling of the consortium revealed dominance of the phylum Firmicutes and the genus <em>Bacillus</em>. To identify key parameters and improve the degradation efficiency of cresol isomers, AKUC-1 was statistically optimized using Response Surface Methodology — Central Composite Design (RSM-CCD), with support from a machine learning tool, support vector machine (SVM). Analysis of Variance confirmed the accuracy of the RSM-CCD model, with a significant F-value of 56.76 and a <em>p</em>-value of less than 0.0001, indicating the model's robustness. Under optimal conditions, with 3.50 g L<sup>−1</sup> sucrose, 0.0075 g L<sup>−1</sup> FeCl<sub>3</sub>, and 0.0075 g L<sup>−1</sup> CaCl<sub>2</sub>, the consortium degraded 82.54 % of 600 ppm cresol isomers, which is 2.58 times higher than in unoptimized media.</div></div>\",\"PeriodicalId\":8947,\"journal\":{\"name\":\"Bioresource Technology Reports\",\"volume\":\"32 \",\"pages\":\"Article 102342\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589014X25003251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25003251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

生物降解是一种经济可行、环境友好、可持续的去除环境基质中有机污染物的方法。这项工作探索了AKUC-1联盟在甲酚异构体混合物(邻甲酚、间甲酚和对甲酚)生物修复方面的潜力。该联合体的微生物组分析显示厚壁菌门和芽孢杆菌属的优势。为了确定关键参数并提高甲酚异构体的降解效率,在机器学习工具支持向量机(SVM)的支持下,利用响应面法-中心复合设计(RSM-CCD)对AKUC-1进行了统计优化。方差分析证实了RSM-CCD模型的准确性,f值为56.76,p值小于0.0001,表明模型具有稳健性。在最佳条件下,在3.50 g L−1蔗糖、0.0075 g L−1 FeCl3和0.0075 g L−1 CaCl2的条件下,该菌体对600 ppm甲酚异构体的降解率为82.54%,是未优化培养基的2.58倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing potential of consortium AKUC-1 for cresol bioremediation: A statistical approach complemented with AI-based prediction

Optimizing potential of consortium AKUC-1 for cresol bioremediation: A statistical approach complemented with AI-based prediction
Biodegradation is an economically feasible, environmentally friendly, and sustainable method for removing organic pollutants from environmental matrices. This work explores the potential of consortium AKUC-1 for bioremediation of cresol isomer mixtures (ortho, meta-, and para-cresol). Microbiome profiling of the consortium revealed dominance of the phylum Firmicutes and the genus Bacillus. To identify key parameters and improve the degradation efficiency of cresol isomers, AKUC-1 was statistically optimized using Response Surface Methodology — Central Composite Design (RSM-CCD), with support from a machine learning tool, support vector machine (SVM). Analysis of Variance confirmed the accuracy of the RSM-CCD model, with a significant F-value of 56.76 and a p-value of less than 0.0001, indicating the model's robustness. Under optimal conditions, with 3.50 g L−1 sucrose, 0.0075 g L−1 FeCl3, and 0.0075 g L−1 CaCl2, the consortium degraded 82.54 % of 600 ppm cresol isomers, which is 2.58 times higher than in unoptimized media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信