{"title":"Richardson-Lucy反卷积与均值平方误差优化数据展开的对比分析","authors":"Nikolay D. Gagunashvili","doi":"10.1016/j.cpc.2025.109894","DOIUrl":null,"url":null,"abstract":"<div><div>Two maximum likelihood-based algorithms for unfolding or deconvolution are considered: the Richardson-Lucy method and the Data Unfolding method with Mean Integrated Square Error (MISE) optimization. Unfolding is viewed as a procedure for estimating an unknown probability density function. Both external and internal quality assessment methods can be applied for this purpose. In some cases, external criteria exist to evaluate deconvolution quality. A typical example is the deconvolution of a blurred image, where the sharpness of the restored image serves as an indicator of quality. However, defining such external criteria can be challenging, particularly when a measurement has not been performed previously. In such instances, internal criteria are necessary to assess the quality of the result independently of external information. The article discusses two internal criteria: MISE for the unfolded distribution and the condition number of the correlation matrix of the unfolded distribution. These internal quality criteria are applied to a comparative analysis of the two methods using identical numerical data. The results of the analysis demonstrate the superiority of the Data Unfolding method with MISE optimization over the Richardson-Lucy method.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"318 ","pages":"Article 109894"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of Richardson-Lucy deconvolution and data unfolding with mean integrated square error optimization\",\"authors\":\"Nikolay D. Gagunashvili\",\"doi\":\"10.1016/j.cpc.2025.109894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two maximum likelihood-based algorithms for unfolding or deconvolution are considered: the Richardson-Lucy method and the Data Unfolding method with Mean Integrated Square Error (MISE) optimization. Unfolding is viewed as a procedure for estimating an unknown probability density function. Both external and internal quality assessment methods can be applied for this purpose. In some cases, external criteria exist to evaluate deconvolution quality. A typical example is the deconvolution of a blurred image, where the sharpness of the restored image serves as an indicator of quality. However, defining such external criteria can be challenging, particularly when a measurement has not been performed previously. In such instances, internal criteria are necessary to assess the quality of the result independently of external information. The article discusses two internal criteria: MISE for the unfolded distribution and the condition number of the correlation matrix of the unfolded distribution. These internal quality criteria are applied to a comparative analysis of the two methods using identical numerical data. The results of the analysis demonstrate the superiority of the Data Unfolding method with MISE optimization over the Richardson-Lucy method.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"318 \",\"pages\":\"Article 109894\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525003960\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525003960","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Comparative analysis of Richardson-Lucy deconvolution and data unfolding with mean integrated square error optimization
Two maximum likelihood-based algorithms for unfolding or deconvolution are considered: the Richardson-Lucy method and the Data Unfolding method with Mean Integrated Square Error (MISE) optimization. Unfolding is viewed as a procedure for estimating an unknown probability density function. Both external and internal quality assessment methods can be applied for this purpose. In some cases, external criteria exist to evaluate deconvolution quality. A typical example is the deconvolution of a blurred image, where the sharpness of the restored image serves as an indicator of quality. However, defining such external criteria can be challenging, particularly when a measurement has not been performed previously. In such instances, internal criteria are necessary to assess the quality of the result independently of external information. The article discusses two internal criteria: MISE for the unfolded distribution and the condition number of the correlation matrix of the unfolded distribution. These internal quality criteria are applied to a comparative analysis of the two methods using identical numerical data. The results of the analysis demonstrate the superiority of the Data Unfolding method with MISE optimization over the Richardson-Lucy method.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.