亚临界燃煤炉不同负荷影响下NOx、SOx排放和燃烧动力学的CFD建模

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-10-09 DOI:10.1016/j.fuel.2025.136966
Mahmudul Firoz, Md. Rezwanul Karim, Arafat A. Bhuiyan
{"title":"亚临界燃煤炉不同负荷影响下NOx、SOx排放和燃烧动力学的CFD建模","authors":"Mahmudul Firoz,&nbsp;Md. Rezwanul Karim,&nbsp;Arafat A. Bhuiyan","doi":"10.1016/j.fuel.2025.136966","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates emissions and combustion behavior of the 125 MWe Barapukuria Thermal Power Plant (BTPP) by burning Bituminous coal (C<sub>137</sub>H<sub>97</sub>O<sub>9</sub>NS). A 3D computational fluid dynamics (CFD) model is developed considering NO<sub>x</sub> scheme through Extended Zeldovich mechanism and SO<sub>x</sub> emission under various loads (50 % to 100 % fuel load). The study uses DDM-Discrete Droplet Method, DTRM-Discrete Transfer Radiation Model, and a standard k–ε turbulence model to study flow dynamics, particle dispersion, heat rate and burnout rate. It is studied that the highest temperatures in the burner throat range from 1850 K to 2200 K with emission profiles of thermal, prompt, and fuel NO<sub>x</sub> at different load levels. The total amount of NO<sub>x</sub> goes from 381 ppm at full load to 974 ppm at 50 % load at final exit. The amount of SO<sub>2</sub> mole fractions goes down 0.000387 to 0.000206 for reduced sulfur input and lower combustion temperatures, residence time (τ) which limit the oxidation of sulfur compounds. The lower load conditions have the highest levels of NO, NO<sub>2</sub>, N<sub>2</sub>O because the gases stay longer residence time (τ) and remain unburn partially. The study shows the reaction kinetics of faster devolatilization and longer residence char burnout rates. As load rises the volatilization rate ranges from 0.0001 to 0.00042 mol.m<sup>−3</sup>.s<sup>−1</sup> and the intense char burnout intensifies from 0.00025 to 0.00065 mol.m<sup>−3</sup>.s<sup>−1</sup>.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"406 ","pages":"Article 136966"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD modeling of varying load-influenced NOx, SOx emissions and combustion kinetics in a sub-critical coal-fired furnace\",\"authors\":\"Mahmudul Firoz,&nbsp;Md. Rezwanul Karim,&nbsp;Arafat A. Bhuiyan\",\"doi\":\"10.1016/j.fuel.2025.136966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates emissions and combustion behavior of the 125 MWe Barapukuria Thermal Power Plant (BTPP) by burning Bituminous coal (C<sub>137</sub>H<sub>97</sub>O<sub>9</sub>NS). A 3D computational fluid dynamics (CFD) model is developed considering NO<sub>x</sub> scheme through Extended Zeldovich mechanism and SO<sub>x</sub> emission under various loads (50 % to 100 % fuel load). The study uses DDM-Discrete Droplet Method, DTRM-Discrete Transfer Radiation Model, and a standard k–ε turbulence model to study flow dynamics, particle dispersion, heat rate and burnout rate. It is studied that the highest temperatures in the burner throat range from 1850 K to 2200 K with emission profiles of thermal, prompt, and fuel NO<sub>x</sub> at different load levels. The total amount of NO<sub>x</sub> goes from 381 ppm at full load to 974 ppm at 50 % load at final exit. The amount of SO<sub>2</sub> mole fractions goes down 0.000387 to 0.000206 for reduced sulfur input and lower combustion temperatures, residence time (τ) which limit the oxidation of sulfur compounds. The lower load conditions have the highest levels of NO, NO<sub>2</sub>, N<sub>2</sub>O because the gases stay longer residence time (τ) and remain unburn partially. The study shows the reaction kinetics of faster devolatilization and longer residence char burnout rates. As load rises the volatilization rate ranges from 0.0001 to 0.00042 mol.m<sup>−3</sup>.s<sup>−1</sup> and the intense char burnout intensifies from 0.00025 to 0.00065 mol.m<sup>−3</sup>.s<sup>−1</sup>.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"406 \",\"pages\":\"Article 136966\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236125026912\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125026912","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了125兆瓦巴拉普库里亚热电厂(BTPP)燃烧烟煤(C137H97O9NS)的排放和燃烧行为。建立了考虑扩展Zeldovich机制NOx方案和不同负荷(50% ~ 100%燃料负荷)下SOx排放的三维计算流体动力学(CFD)模型。采用ddm离散液滴法、dtrm离散传递辐射模型和标准k -ε湍流模型对流动动力学、颗粒弥散、热速率和燃速进行了研究。研究了燃烧器喉道的最高温度在1850 ~ 2200k之间,以及不同负荷水平下热态、瞬态和燃料态NOx的排放曲线。氮氧化物的总量从满载时的381ppm增加到50%负荷时的974ppm。由于硫输入量减少,燃烧温度和停留时间(τ)降低,限制了硫化合物的氧化,SO2摩尔分数的数量从0.000387下降到0.000206。在较低负荷条件下,由于气体停留时间(τ)较长且部分未燃烧,NO、NO2和N2O含量最高。研究表明,该反应具有更快的脱挥发速率和更长的停留焦燃速率。随着负载的增加,挥发速率范围为0.0001 ~ 0.00042 mol.m−3。在0.00025 ~ 0.00065 mol.m−3.s−1范围内,焦炭烧烬强度逐渐增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CFD modeling of varying load-influenced NOx, SOx emissions and combustion kinetics in a sub-critical coal-fired furnace

CFD modeling of varying load-influenced NOx, SOx emissions and combustion kinetics in a sub-critical coal-fired furnace
This study investigates emissions and combustion behavior of the 125 MWe Barapukuria Thermal Power Plant (BTPP) by burning Bituminous coal (C137H97O9NS). A 3D computational fluid dynamics (CFD) model is developed considering NOx scheme through Extended Zeldovich mechanism and SOx emission under various loads (50 % to 100 % fuel load). The study uses DDM-Discrete Droplet Method, DTRM-Discrete Transfer Radiation Model, and a standard k–ε turbulence model to study flow dynamics, particle dispersion, heat rate and burnout rate. It is studied that the highest temperatures in the burner throat range from 1850 K to 2200 K with emission profiles of thermal, prompt, and fuel NOx at different load levels. The total amount of NOx goes from 381 ppm at full load to 974 ppm at 50 % load at final exit. The amount of SO2 mole fractions goes down 0.000387 to 0.000206 for reduced sulfur input and lower combustion temperatures, residence time (τ) which limit the oxidation of sulfur compounds. The lower load conditions have the highest levels of NO, NO2, N2O because the gases stay longer residence time (τ) and remain unburn partially. The study shows the reaction kinetics of faster devolatilization and longer residence char burnout rates. As load rises the volatilization rate ranges from 0.0001 to 0.00042 mol.m−3.s−1 and the intense char burnout intensifies from 0.00025 to 0.00065 mol.m−3.s−1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信