Minhee Ku , Suhui Jeong , Nara Yoon , Hwain Myeong , Jinwon Kwon , Jaemoon Yang , Sungbaek Seo
{"title":"利用聚单宁酸纳米球对侵袭性TNBC细胞的氧化还原驱动机制调控","authors":"Minhee Ku , Suhui Jeong , Nara Yoon , Hwain Myeong , Jinwon Kwon , Jaemoon Yang , Sungbaek Seo","doi":"10.1016/j.nantod.2025.102907","DOIUrl":null,"url":null,"abstract":"<div><div>Poly(tannic acid) (pTA) nanospheres, assembled from natural tannic acid molecules, exhibit strong intracellular antioxidant activity and effectively modulate the invasive behaviour of triple-negative breast cancer (TNBC) cells. Acting as redox-active nanostructures, pTA nanospheres suppress proliferation and induce mechanoregulatory changes, including altered nuclear morphology, cytoskeletal disassembly, and diminished cell polarity. Specifically, pTA treatment causes spatial mislocalization of MT1-MMP from the invasive front to the perinuclear zone, disrupting its colocalization with F-actin and reducing its matrix-degrading capacity. High-resolution STED and TEM imaging reveal vimentin network collapse and mitochondrial redistribution along microtubules. Metabolic profiling shows a marked decline in oxidative phosphorylation-linked ATP production. Despite these functional disruptions, cleaved caspase-3 remains undetectable, indicating a non-apoptotic, cytostatic state accompanied by autophagy and redox signalling compensation. These findings demonstrate that pTA nanospheres exert redox-driven mechanoregulation in TNBC cells, limiting their invasive potential without inducing cell death, and highlight their promise as a non-lethal nanotherapeutics approach for post-surgical or adjuvant control of metastatic progression.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"66 ","pages":"Article 102907"},"PeriodicalIF":10.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox-driven mechanoregulation of invasive TNBC cells using poly(tannic acid) nanospheres\",\"authors\":\"Minhee Ku , Suhui Jeong , Nara Yoon , Hwain Myeong , Jinwon Kwon , Jaemoon Yang , Sungbaek Seo\",\"doi\":\"10.1016/j.nantod.2025.102907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Poly(tannic acid) (pTA) nanospheres, assembled from natural tannic acid molecules, exhibit strong intracellular antioxidant activity and effectively modulate the invasive behaviour of triple-negative breast cancer (TNBC) cells. Acting as redox-active nanostructures, pTA nanospheres suppress proliferation and induce mechanoregulatory changes, including altered nuclear morphology, cytoskeletal disassembly, and diminished cell polarity. Specifically, pTA treatment causes spatial mislocalization of MT1-MMP from the invasive front to the perinuclear zone, disrupting its colocalization with F-actin and reducing its matrix-degrading capacity. High-resolution STED and TEM imaging reveal vimentin network collapse and mitochondrial redistribution along microtubules. Metabolic profiling shows a marked decline in oxidative phosphorylation-linked ATP production. Despite these functional disruptions, cleaved caspase-3 remains undetectable, indicating a non-apoptotic, cytostatic state accompanied by autophagy and redox signalling compensation. These findings demonstrate that pTA nanospheres exert redox-driven mechanoregulation in TNBC cells, limiting their invasive potential without inducing cell death, and highlight their promise as a non-lethal nanotherapeutics approach for post-surgical or adjuvant control of metastatic progression.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"66 \",\"pages\":\"Article 102907\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013225002798\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225002798","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Redox-driven mechanoregulation of invasive TNBC cells using poly(tannic acid) nanospheres
Poly(tannic acid) (pTA) nanospheres, assembled from natural tannic acid molecules, exhibit strong intracellular antioxidant activity and effectively modulate the invasive behaviour of triple-negative breast cancer (TNBC) cells. Acting as redox-active nanostructures, pTA nanospheres suppress proliferation and induce mechanoregulatory changes, including altered nuclear morphology, cytoskeletal disassembly, and diminished cell polarity. Specifically, pTA treatment causes spatial mislocalization of MT1-MMP from the invasive front to the perinuclear zone, disrupting its colocalization with F-actin and reducing its matrix-degrading capacity. High-resolution STED and TEM imaging reveal vimentin network collapse and mitochondrial redistribution along microtubules. Metabolic profiling shows a marked decline in oxidative phosphorylation-linked ATP production. Despite these functional disruptions, cleaved caspase-3 remains undetectable, indicating a non-apoptotic, cytostatic state accompanied by autophagy and redox signalling compensation. These findings demonstrate that pTA nanospheres exert redox-driven mechanoregulation in TNBC cells, limiting their invasive potential without inducing cell death, and highlight their promise as a non-lethal nanotherapeutics approach for post-surgical or adjuvant control of metastatic progression.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.