mwcnt集成了BiFeO3/MoS2复合材料,用于非对称储能系统的高电容和耐用正极

IF 5.1 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
F. Nelson Mariya Souri , R. Thilak Kumar , D. Siva Priya , Talat Ali , Mohd Shkir
{"title":"mwcnt集成了BiFeO3/MoS2复合材料,用于非对称储能系统的高电容和耐用正极","authors":"F. Nelson Mariya Souri ,&nbsp;R. Thilak Kumar ,&nbsp;D. Siva Priya ,&nbsp;Talat Ali ,&nbsp;Mohd Shkir","doi":"10.1016/j.diamond.2025.112900","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite-structured bismuth ferrite (BiFeO<sub>3</sub>, BFO) is a promising pseudocapacitive material but suffers from poor conductivity and sluggish ion transport. To overcome these limitations, we designed a ternary nanocomposite comprising BFO and molybdenum disulfide (MoS<sub>2</sub>) integrated with multiwalled carbon nanotubes (MWCNTs), forming a BFO/MoS<sub>2</sub>@MWCNT electrode for asymmetric supercapacitors (ASCs). MoS<sub>2</sub> introduces abundant redox-active sites, while MWCNTs enhance conductivity and structural stability, enabling efficient charge transfer and ion diffusion. The optimized electrode delivers a high specific capacitance of 1765 F g<sup>−1</sup> at 1 A g<sup>−1</sup> and maintains excellent rate performance. When assembled with activated carbon as the negative electrode, the ASC achieves an energy density of 65.7 Wh kg<sup>−1</sup> at a power density of 802.7 W kg<sup>−1</sup>. Furthermore, the device retains 96.7 % capacitance after 10,000 cycles, demonstrating outstanding durability. This study highlights a synergistic material design that effectively integrates BFO, MoS<sub>2</sub> and MWCNTs for high-performance energy storage applications.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"159 ","pages":"Article 112900"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MWCNT-integrates BiFeO3/MoS2 composite for high-capacitance and durable positive electrodes in asymmetric energy storage system\",\"authors\":\"F. Nelson Mariya Souri ,&nbsp;R. Thilak Kumar ,&nbsp;D. Siva Priya ,&nbsp;Talat Ali ,&nbsp;Mohd Shkir\",\"doi\":\"10.1016/j.diamond.2025.112900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite-structured bismuth ferrite (BiFeO<sub>3</sub>, BFO) is a promising pseudocapacitive material but suffers from poor conductivity and sluggish ion transport. To overcome these limitations, we designed a ternary nanocomposite comprising BFO and molybdenum disulfide (MoS<sub>2</sub>) integrated with multiwalled carbon nanotubes (MWCNTs), forming a BFO/MoS<sub>2</sub>@MWCNT electrode for asymmetric supercapacitors (ASCs). MoS<sub>2</sub> introduces abundant redox-active sites, while MWCNTs enhance conductivity and structural stability, enabling efficient charge transfer and ion diffusion. The optimized electrode delivers a high specific capacitance of 1765 F g<sup>−1</sup> at 1 A g<sup>−1</sup> and maintains excellent rate performance. When assembled with activated carbon as the negative electrode, the ASC achieves an energy density of 65.7 Wh kg<sup>−1</sup> at a power density of 802.7 W kg<sup>−1</sup>. Furthermore, the device retains 96.7 % capacitance after 10,000 cycles, demonstrating outstanding durability. This study highlights a synergistic material design that effectively integrates BFO, MoS<sub>2</sub> and MWCNTs for high-performance energy storage applications.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"159 \",\"pages\":\"Article 112900\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963525009574\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525009574","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿结构的铋铁氧体(BiFeO3, BFO)是一种很有前途的赝电容材料,但其导电性差,离子传输缓慢。为了克服这些限制,我们设计了一种由BFO和二硫化钼(MoS2)与多壁碳纳米管(MWCNTs)集成的三元纳米复合材料,形成了用于不对称超级电容器(ASCs)的BFO/MoS2@MWCNT电极。MoS2引入了丰富的氧化还原活性位点,而MWCNTs增强了电导率和结构稳定性,实现了高效的电荷转移和离子扩散。优化后的电极在1ag−1时具有1765 F g−1的高比电容,并保持了优异的倍率性能。当以活性炭作为负极组装时,ASC的功率密度为802.7 W kg - 1,能量密度为65.7 Wh kg - 1。此外,该设备在10,000次循环后仍保持96.7%的电容,表现出出色的耐用性。本研究强调了一种协同材料设计,该设计有效地集成了BFO、MoS2和MWCNTs,用于高性能储能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MWCNT-integrates BiFeO3/MoS2 composite for high-capacitance and durable positive electrodes in asymmetric energy storage system

MWCNT-integrates BiFeO3/MoS2 composite for high-capacitance and durable positive electrodes in asymmetric energy storage system
Perovskite-structured bismuth ferrite (BiFeO3, BFO) is a promising pseudocapacitive material but suffers from poor conductivity and sluggish ion transport. To overcome these limitations, we designed a ternary nanocomposite comprising BFO and molybdenum disulfide (MoS2) integrated with multiwalled carbon nanotubes (MWCNTs), forming a BFO/MoS2@MWCNT electrode for asymmetric supercapacitors (ASCs). MoS2 introduces abundant redox-active sites, while MWCNTs enhance conductivity and structural stability, enabling efficient charge transfer and ion diffusion. The optimized electrode delivers a high specific capacitance of 1765 F g−1 at 1 A g−1 and maintains excellent rate performance. When assembled with activated carbon as the negative electrode, the ASC achieves an energy density of 65.7 Wh kg−1 at a power density of 802.7 W kg−1. Furthermore, the device retains 96.7 % capacitance after 10,000 cycles, demonstrating outstanding durability. This study highlights a synergistic material design that effectively integrates BFO, MoS2 and MWCNTs for high-performance energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信