Ibrar Ahmad , Syeeda Nida Alim , Khizar Hayat , Abdullah Shah , Sabir Shah , Said Karim Shah
{"title":"优化聚合物太阳能电池操作参数的实验和计算见解","authors":"Ibrar Ahmad , Syeeda Nida Alim , Khizar Hayat , Abdullah Shah , Sabir Shah , Said Karim Shah","doi":"10.1016/j.cap.2025.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the impact of active layer (AL) thickness, annealing temperatures(ATs), and interfacial materials on the performance of polymer solar cells (PSCs) based on P3HT: PCBM. AL thickness was tuned by varying spin speeds (1000–5000 rpm), with devices D1K and D4K achieving PCEs of 2.37 % and 2.17 % after thermal annealing at 130 °C. Increasing the AT to 180 °C further enhanced device efficiency. The influence of interfacial layers LiF and Ca on PSC performance and thermal stability was also investigated. Ca/Al-based devices outperformed others at lower temperatures but degraded at higher temperatures, while LiF/Al-based devices showed reduced PCE beyond ∼110 °C. To complement experiments, simulations using drift-diffusion, exciton-diffusion, and transfer-matrix models(TMM) were performed. These provided insights into photon distribution, absorption, and carrier generation, supporting the experimental outcomes. The study offers a comprehensive understanding of the interplay between device architecture and thermal treatment in optimizing PSC performance.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 291-299"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and computational insights into optimizing polymer solar cell operational parameters\",\"authors\":\"Ibrar Ahmad , Syeeda Nida Alim , Khizar Hayat , Abdullah Shah , Sabir Shah , Said Karim Shah\",\"doi\":\"10.1016/j.cap.2025.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the impact of active layer (AL) thickness, annealing temperatures(ATs), and interfacial materials on the performance of polymer solar cells (PSCs) based on P3HT: PCBM. AL thickness was tuned by varying spin speeds (1000–5000 rpm), with devices D1K and D4K achieving PCEs of 2.37 % and 2.17 % after thermal annealing at 130 °C. Increasing the AT to 180 °C further enhanced device efficiency. The influence of interfacial layers LiF and Ca on PSC performance and thermal stability was also investigated. Ca/Al-based devices outperformed others at lower temperatures but degraded at higher temperatures, while LiF/Al-based devices showed reduced PCE beyond ∼110 °C. To complement experiments, simulations using drift-diffusion, exciton-diffusion, and transfer-matrix models(TMM) were performed. These provided insights into photon distribution, absorption, and carrier generation, supporting the experimental outcomes. The study offers a comprehensive understanding of the interplay between device architecture and thermal treatment in optimizing PSC performance.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"80 \",\"pages\":\"Pages 291-299\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156717392500210X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156717392500210X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental and computational insights into optimizing polymer solar cell operational parameters
This study explores the impact of active layer (AL) thickness, annealing temperatures(ATs), and interfacial materials on the performance of polymer solar cells (PSCs) based on P3HT: PCBM. AL thickness was tuned by varying spin speeds (1000–5000 rpm), with devices D1K and D4K achieving PCEs of 2.37 % and 2.17 % after thermal annealing at 130 °C. Increasing the AT to 180 °C further enhanced device efficiency. The influence of interfacial layers LiF and Ca on PSC performance and thermal stability was also investigated. Ca/Al-based devices outperformed others at lower temperatures but degraded at higher temperatures, while LiF/Al-based devices showed reduced PCE beyond ∼110 °C. To complement experiments, simulations using drift-diffusion, exciton-diffusion, and transfer-matrix models(TMM) were performed. These provided insights into photon distribution, absorption, and carrier generation, supporting the experimental outcomes. The study offers a comprehensive understanding of the interplay between device architecture and thermal treatment in optimizing PSC performance.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.