Martin Demleitner , Lukas Endner , Holger Ruckdäschel
{"title":"改性环氧树脂及其玻璃纤维复合材料在空气中热氧化降解的寿命预测及其与长期老化行为的关系","authors":"Martin Demleitner , Lukas Endner , Holger Ruckdäschel","doi":"10.1016/j.polymdegradstab.2025.111686","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal stability and material degradation are critical aspects of polymers and composites, influencing their processing, operating temperatures and overall lifespan. Due to their excellent mechanical and thermal properties, epoxy resins find widespread use in coatings, adhesives, and composites across various industries. This study examines the thermo-oxidative stability of high-Tg epoxy resin and glass fiber composite systems (GFRP), focusing on long-term degradation mechanisms in air atmosphere and kinetic modeling for accurate lifetime predictions. Here, the influence of commonly used additives such as polyethersulfone as toughener, and aluminum diethyl phosphinate (AlPi), as flame retardant on the thermo-oxidative degradation and resulting weight loss was investigated.</div><div>Model-free kinetic approaches were employed to characterize the thermo-oxidative degradation. In this study, model-free methods such as Flynn–Wall–Ozawa and Friedman are used because they offer flexibility and do not require detailed knowledge of the chemical reactions involved. Thermogravimetric analysis (TGA) was used for dynamic degradation measurements and weight loss predictions, while oven aging experiments in air atmosphere at three temperatures for up to 1000 h were conducted to verify the predictions.</div><div>The study highlights the challenges in extrapolating short-term degradation data to long-term behavior, especially under oxidative conditions. It also explores the influence of various additives and fiber reinforcement on thermo-oxidative stability, with the goal of enhancing future material formulations for high-performance applications. Additionally, it provides improved insight into the predictability of a material’s lifespan.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"242 ","pages":"Article 111686"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifetime prediction of thermo-oxidative degradation of a modified epoxy resin and its glass fiber composite in air atmosphere and correlation with long-term aging behavior\",\"authors\":\"Martin Demleitner , Lukas Endner , Holger Ruckdäschel\",\"doi\":\"10.1016/j.polymdegradstab.2025.111686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal stability and material degradation are critical aspects of polymers and composites, influencing their processing, operating temperatures and overall lifespan. Due to their excellent mechanical and thermal properties, epoxy resins find widespread use in coatings, adhesives, and composites across various industries. This study examines the thermo-oxidative stability of high-Tg epoxy resin and glass fiber composite systems (GFRP), focusing on long-term degradation mechanisms in air atmosphere and kinetic modeling for accurate lifetime predictions. Here, the influence of commonly used additives such as polyethersulfone as toughener, and aluminum diethyl phosphinate (AlPi), as flame retardant on the thermo-oxidative degradation and resulting weight loss was investigated.</div><div>Model-free kinetic approaches were employed to characterize the thermo-oxidative degradation. In this study, model-free methods such as Flynn–Wall–Ozawa and Friedman are used because they offer flexibility and do not require detailed knowledge of the chemical reactions involved. Thermogravimetric analysis (TGA) was used for dynamic degradation measurements and weight loss predictions, while oven aging experiments in air atmosphere at three temperatures for up to 1000 h were conducted to verify the predictions.</div><div>The study highlights the challenges in extrapolating short-term degradation data to long-term behavior, especially under oxidative conditions. It also explores the influence of various additives and fiber reinforcement on thermo-oxidative stability, with the goal of enhancing future material formulations for high-performance applications. Additionally, it provides improved insight into the predictability of a material’s lifespan.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"242 \",\"pages\":\"Article 111686\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391025005154\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025005154","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Lifetime prediction of thermo-oxidative degradation of a modified epoxy resin and its glass fiber composite in air atmosphere and correlation with long-term aging behavior
Thermal stability and material degradation are critical aspects of polymers and composites, influencing their processing, operating temperatures and overall lifespan. Due to their excellent mechanical and thermal properties, epoxy resins find widespread use in coatings, adhesives, and composites across various industries. This study examines the thermo-oxidative stability of high-Tg epoxy resin and glass fiber composite systems (GFRP), focusing on long-term degradation mechanisms in air atmosphere and kinetic modeling for accurate lifetime predictions. Here, the influence of commonly used additives such as polyethersulfone as toughener, and aluminum diethyl phosphinate (AlPi), as flame retardant on the thermo-oxidative degradation and resulting weight loss was investigated.
Model-free kinetic approaches were employed to characterize the thermo-oxidative degradation. In this study, model-free methods such as Flynn–Wall–Ozawa and Friedman are used because they offer flexibility and do not require detailed knowledge of the chemical reactions involved. Thermogravimetric analysis (TGA) was used for dynamic degradation measurements and weight loss predictions, while oven aging experiments in air atmosphere at three temperatures for up to 1000 h were conducted to verify the predictions.
The study highlights the challenges in extrapolating short-term degradation data to long-term behavior, especially under oxidative conditions. It also explores the influence of various additives and fiber reinforcement on thermo-oxidative stability, with the goal of enhancing future material formulations for high-performance applications. Additionally, it provides improved insight into the predictability of a material’s lifespan.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.