Attila Bérczes , Lajos Hajdu , Florian Luca , István Pink
{"title":"具有有界素数间隙的Lucas序列的成员","authors":"Attila Bérczes , Lajos Hajdu , Florian Luca , István Pink","doi":"10.1016/j.jnt.2025.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we look at terms of Lucas sequences whose prime factors have indices with bounded gaps in the sequence of all prime numbers. Some of our results depend on certain widely believed conjectures. In our proofs we combine various tools, including Baker's method, the subspace theorem, and results of Stewart, and Murty and Wong.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 897-917"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On members of Lucas sequences with bounded prime gaps\",\"authors\":\"Attila Bérczes , Lajos Hajdu , Florian Luca , István Pink\",\"doi\":\"10.1016/j.jnt.2025.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we look at terms of Lucas sequences whose prime factors have indices with bounded gaps in the sequence of all prime numbers. Some of our results depend on certain widely believed conjectures. In our proofs we combine various tools, including Baker's method, the subspace theorem, and results of Stewart, and Murty and Wong.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 897-917\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002677\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002677","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On members of Lucas sequences with bounded prime gaps
In this paper, we look at terms of Lucas sequences whose prime factors have indices with bounded gaps in the sequence of all prime numbers. Some of our results depend on certain widely believed conjectures. In our proofs we combine various tools, including Baker's method, the subspace theorem, and results of Stewart, and Murty and Wong.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.