DSTMA-BLSTM算法用于路边空气污染物时间序列预测及灵敏度分析

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yusheng Qin , Xin Han , Hanwen Shi , Xiangxian Li , Jingjing Tong , Minguang Gao , Yujun Zhang
{"title":"DSTMA-BLSTM算法用于路边空气污染物时间序列预测及灵敏度分析","authors":"Yusheng Qin ,&nbsp;Xin Han ,&nbsp;Hanwen Shi ,&nbsp;Xiangxian Li ,&nbsp;Jingjing Tong ,&nbsp;Minguang Gao ,&nbsp;Yujun Zhang","doi":"10.1016/j.envsoft.2025.106730","DOIUrl":null,"url":null,"abstract":"<div><div>Road traffic pollution greatly affects urban air quality, making accurate prediction of roadside pollutant concentrations essential for effective environmental management. This study presents a novel DSTMA-BLSTM algorithm, which combines Dynamic Shared and Task-specific Multi-head Attention (DSTMA) with Bidirectional Long Short-Term Memory (BLSTM) networks, to forecast temporal changes in roadside pollutants and analyze their sensitivity. Using real monitoring data, the study identifies wind speed and the counts of gasoline and diesel vehicles as critical factors influencing roadside pollutant levels. The model achieved outstanding predictive performance for NO, NO<sub>2</sub>, and CO<sub>2</sub>, with R<sup>2</sup> values of 0.959, 0.944, and 0.949, respectively, demonstrating its exceptional ability to capture the dynamics of traffic-related pollutants. This work not only establishes the DSTMA-BLSTM model as a powerful tool for multi-pollutant forecasting but also proposes a fresh perspective for jointly predicting traffic and non-traffic-related pollutants in future research.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"195 ","pages":"Article 106730"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSTMA-BLSTM algorithm for roadside air pollutant time series prediction and sensitivity analysis\",\"authors\":\"Yusheng Qin ,&nbsp;Xin Han ,&nbsp;Hanwen Shi ,&nbsp;Xiangxian Li ,&nbsp;Jingjing Tong ,&nbsp;Minguang Gao ,&nbsp;Yujun Zhang\",\"doi\":\"10.1016/j.envsoft.2025.106730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Road traffic pollution greatly affects urban air quality, making accurate prediction of roadside pollutant concentrations essential for effective environmental management. This study presents a novel DSTMA-BLSTM algorithm, which combines Dynamic Shared and Task-specific Multi-head Attention (DSTMA) with Bidirectional Long Short-Term Memory (BLSTM) networks, to forecast temporal changes in roadside pollutants and analyze their sensitivity. Using real monitoring data, the study identifies wind speed and the counts of gasoline and diesel vehicles as critical factors influencing roadside pollutant levels. The model achieved outstanding predictive performance for NO, NO<sub>2</sub>, and CO<sub>2</sub>, with R<sup>2</sup> values of 0.959, 0.944, and 0.949, respectively, demonstrating its exceptional ability to capture the dynamics of traffic-related pollutants. This work not only establishes the DSTMA-BLSTM model as a powerful tool for multi-pollutant forecasting but also proposes a fresh perspective for jointly predicting traffic and non-traffic-related pollutants in future research.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"195 \",\"pages\":\"Article 106730\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225004141\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225004141","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

道路交通污染严重影响城市空气质量,准确预测道路污染物浓度对有效的环境管理至关重要。本文提出了一种新的DSTMA-BLSTM算法,该算法将动态共享和特定任务的多头注意(DSTMA)与双向长短期记忆(BLSTM)网络相结合,用于预测路边污染物的时间变化并分析其敏感性。利用真实的监测数据,该研究确定风速和汽油和柴油车辆的数量是影响路边污染物水平的关键因素。该模型对NO、NO2和CO2的预测效果较好,R2分别为0.959、0.944和0.949,表明该模型具有较强的交通相关污染物动态捕捉能力。本研究不仅确立了DSTMA-BLSTM模型作为多污染物预测的有力工具,而且为未来研究交通与非交通相关污染物的联合预测提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSTMA-BLSTM algorithm for roadside air pollutant time series prediction and sensitivity analysis
Road traffic pollution greatly affects urban air quality, making accurate prediction of roadside pollutant concentrations essential for effective environmental management. This study presents a novel DSTMA-BLSTM algorithm, which combines Dynamic Shared and Task-specific Multi-head Attention (DSTMA) with Bidirectional Long Short-Term Memory (BLSTM) networks, to forecast temporal changes in roadside pollutants and analyze their sensitivity. Using real monitoring data, the study identifies wind speed and the counts of gasoline and diesel vehicles as critical factors influencing roadside pollutant levels. The model achieved outstanding predictive performance for NO, NO2, and CO2, with R2 values of 0.959, 0.944, and 0.949, respectively, demonstrating its exceptional ability to capture the dynamics of traffic-related pollutants. This work not only establishes the DSTMA-BLSTM model as a powerful tool for multi-pollutant forecasting but also proposes a fresh perspective for jointly predicting traffic and non-traffic-related pollutants in future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信