求解带Dirichlet边界的椭圆型monge - ampantere方程的无网格方法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Zhiyong Liu, Qiuyan Xu
{"title":"求解带Dirichlet边界的椭圆型monge - ampantere方程的无网格方法","authors":"Zhiyong Liu,&nbsp;Qiuyan Xu","doi":"10.1016/j.camwa.2025.09.036","DOIUrl":null,"url":null,"abstract":"<div><div>We develop the meshfree method for solving the elliptic Monge-Ampère equation with Dirichlet boundary on the bounded domain and prove its convergence in the paper. In terms of trial, we use the radial functions (for example, Whittle-Matérn-Sobolev kernels and Wendland's compactly supported radial basis functions) which can reproduce <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>σ</mi><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> to construct the finite dimensional approximate spaces. It allows the easy construction of approximation spaces in arbitrary dimensions with arbitrary smoothness and avoids the huge workload caused by mesh-based methods at the same time. In terms of testing, it just needs to take values directly on the collocation points and greatly simplifies the difficulties caused by variation and integration. Theoretically, we obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error when the testing discretization is finer than the trial discretization. The convergence rate depends on the regularity of the solution, the smoothness of the computing domain, and the approximation of kernel-based trial spaces. An extension to non-Dirichlet boundary condition is in a forthcoming paper.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"201 ","pages":"Pages 53-64"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meshfree method for solving the elliptic Monge-Ampère equation with Dirichlet boundary\",\"authors\":\"Zhiyong Liu,&nbsp;Qiuyan Xu\",\"doi\":\"10.1016/j.camwa.2025.09.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop the meshfree method for solving the elliptic Monge-Ampère equation with Dirichlet boundary on the bounded domain and prove its convergence in the paper. In terms of trial, we use the radial functions (for example, Whittle-Matérn-Sobolev kernels and Wendland's compactly supported radial basis functions) which can reproduce <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>σ</mi><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> to construct the finite dimensional approximate spaces. It allows the easy construction of approximation spaces in arbitrary dimensions with arbitrary smoothness and avoids the huge workload caused by mesh-based methods at the same time. In terms of testing, it just needs to take values directly on the collocation points and greatly simplifies the difficulties caused by variation and integration. Theoretically, we obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error when the testing discretization is finer than the trial discretization. The convergence rate depends on the regularity of the solution, the smoothness of the computing domain, and the approximation of kernel-based trial spaces. An extension to non-Dirichlet boundary condition is in a forthcoming paper.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"201 \",\"pages\":\"Pages 53-64\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125004171\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125004171","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了在有界区域上求解具有Dirichlet边界的椭圆型monge - ampantere方程的无网格方法,并证明了该方法的收敛性。在试验方面,我们使用可以再现Wσ,2(Rd)的径向函数(例如whittle - mat - sobolev核和Wendland的紧支持径向基函数)来构造有限维近似空间。它可以方便地在任意维度上以任意平滑度构造近似空间,同时避免了基于网格的方法所带来的巨大工作量。在测试方面,它只需要直接在搭配点上取值,大大简化了变化和积分带来的困难。理论上,当测试离散化比试验离散化更精细时,我们得到L2误差。收敛速度取决于解的正则性、计算域的平滑性和基于核的试验空间的逼近性。对非狄利克雷边界条件的推广,在即将发表的一篇论文中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meshfree method for solving the elliptic Monge-Ampère equation with Dirichlet boundary
We develop the meshfree method for solving the elliptic Monge-Ampère equation with Dirichlet boundary on the bounded domain and prove its convergence in the paper. In terms of trial, we use the radial functions (for example, Whittle-Matérn-Sobolev kernels and Wendland's compactly supported radial basis functions) which can reproduce Wσ,2(Rd) to construct the finite dimensional approximate spaces. It allows the easy construction of approximation spaces in arbitrary dimensions with arbitrary smoothness and avoids the huge workload caused by mesh-based methods at the same time. In terms of testing, it just needs to take values directly on the collocation points and greatly simplifies the difficulties caused by variation and integration. Theoretically, we obtain L2 error when the testing discretization is finer than the trial discretization. The convergence rate depends on the regularity of the solution, the smoothness of the computing domain, and the approximation of kernel-based trial spaces. An extension to non-Dirichlet boundary condition is in a forthcoming paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信