疲劳水力压裂裂缝网络演化、渗透率及诱发地震活动性

IF 7.5 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Chang Xia , Huanyu Wu , Ki-Bok Min , Derek Elsworth , Qi Zhao
{"title":"疲劳水力压裂裂缝网络演化、渗透率及诱发地震活动性","authors":"Chang Xia ,&nbsp;Huanyu Wu ,&nbsp;Ki-Bok Min ,&nbsp;Derek Elsworth ,&nbsp;Qi Zhao","doi":"10.1016/j.ijrmms.2025.106297","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclic hydraulic fracturing (CHF) shows potential in reducing induced seismicity compared to conventional hydraulic fracturing (HF). However, controlling mechanisms that potentially limit induced seismicity but still enhance permeability during CHF remain unclear. We develop a novel time- and stress-dependent damage representative of fatigue crack growth through a coupled hydromechanical model using the block-based discrete element method (DEM). This new framework addresses the challenges in modeling CHF by simultaneously considering discrete fracture network, hydromechanical coupling, fatigue and in-situ stresses. Matching pressurization cycles-to-failure data in laboratory experiments confirms the contribution of sub-critical crack growth in the reduced breakdown pressures in CHF. Modeling fluid injections into a fractured reservoir with contrasting far-field stress ratios of 1.17 and 1.40 shows that CHF mainshocks are smaller than those by conventional HF. While HF induces seismicity primarily through the creation of new fractures, CHF generates seismicity predominantly from multiple small shear reactivations – these dissipate energy progressively and thereby reduce mainshock magnitude. CHF enhances permeability by creating a more connected fracture network than HF. Far-field stress ratio influences permeability by directing fracture growth orientations, and larger stress ratio leads to a higher proportion of shear fractures. This study provides new quantitative insights into the mechanisms of CHF in reducing induced seismicity while increasing effectiveness in elevating permeability.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"195 ","pages":"Article 106297"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of fracture network, permeability and induced seismicity during fatigue hydraulic fracturing\",\"authors\":\"Chang Xia ,&nbsp;Huanyu Wu ,&nbsp;Ki-Bok Min ,&nbsp;Derek Elsworth ,&nbsp;Qi Zhao\",\"doi\":\"10.1016/j.ijrmms.2025.106297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cyclic hydraulic fracturing (CHF) shows potential in reducing induced seismicity compared to conventional hydraulic fracturing (HF). However, controlling mechanisms that potentially limit induced seismicity but still enhance permeability during CHF remain unclear. We develop a novel time- and stress-dependent damage representative of fatigue crack growth through a coupled hydromechanical model using the block-based discrete element method (DEM). This new framework addresses the challenges in modeling CHF by simultaneously considering discrete fracture network, hydromechanical coupling, fatigue and in-situ stresses. Matching pressurization cycles-to-failure data in laboratory experiments confirms the contribution of sub-critical crack growth in the reduced breakdown pressures in CHF. Modeling fluid injections into a fractured reservoir with contrasting far-field stress ratios of 1.17 and 1.40 shows that CHF mainshocks are smaller than those by conventional HF. While HF induces seismicity primarily through the creation of new fractures, CHF generates seismicity predominantly from multiple small shear reactivations – these dissipate energy progressively and thereby reduce mainshock magnitude. CHF enhances permeability by creating a more connected fracture network than HF. Far-field stress ratio influences permeability by directing fracture growth orientations, and larger stress ratio leads to a higher proportion of shear fractures. This study provides new quantitative insights into the mechanisms of CHF in reducing induced seismicity while increasing effectiveness in elevating permeability.</div></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"195 \",\"pages\":\"Article 106297\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160925002746\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925002746","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

与常规水力压裂(HF)相比,循环水力压裂(CHF)在减少诱发地震活动方面具有潜力。然而,在CHF期间,潜在限制诱发地震活动性但仍能提高渗透率的控制机制尚不清楚。本文采用基于块的离散元法(DEM)建立了一个耦合的流体力学模型,建立了一种新的疲劳裂纹扩展的时间和应力相关损伤模型。这个新框架通过同时考虑离散裂缝网络、流体力学耦合、疲劳和地应力,解决了CHF建模的挑战。实验室实验中匹配的加压循环到失效数据证实了亚临界裂纹扩展对CHF中降低的破裂压力的贡献。在远场应力比为1.17和1.40的情况下,对裂缝性储层进行流体注入模拟表明,CHF主震比常规HF主震小。高频主要通过新裂缝的产生引起地震活动,而高频主要通过多次小剪切再激活引起地震活动,这些活动逐渐耗散能量,从而降低了主震震级。与HF相比,CHF通过创建更紧密的裂缝网络来提高渗透率。远场应力比通过引导裂缝生长方向影响渗透率,应力比越大,剪切裂缝比例越高。该研究为CHF在降低诱发地震活动性的同时提高渗透率的有效性的机制提供了新的定量见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of fracture network, permeability and induced seismicity during fatigue hydraulic fracturing
Cyclic hydraulic fracturing (CHF) shows potential in reducing induced seismicity compared to conventional hydraulic fracturing (HF). However, controlling mechanisms that potentially limit induced seismicity but still enhance permeability during CHF remain unclear. We develop a novel time- and stress-dependent damage representative of fatigue crack growth through a coupled hydromechanical model using the block-based discrete element method (DEM). This new framework addresses the challenges in modeling CHF by simultaneously considering discrete fracture network, hydromechanical coupling, fatigue and in-situ stresses. Matching pressurization cycles-to-failure data in laboratory experiments confirms the contribution of sub-critical crack growth in the reduced breakdown pressures in CHF. Modeling fluid injections into a fractured reservoir with contrasting far-field stress ratios of 1.17 and 1.40 shows that CHF mainshocks are smaller than those by conventional HF. While HF induces seismicity primarily through the creation of new fractures, CHF generates seismicity predominantly from multiple small shear reactivations – these dissipate energy progressively and thereby reduce mainshock magnitude. CHF enhances permeability by creating a more connected fracture network than HF. Far-field stress ratio influences permeability by directing fracture growth orientations, and larger stress ratio leads to a higher proportion of shear fractures. This study provides new quantitative insights into the mechanisms of CHF in reducing induced seismicity while increasing effectiveness in elevating permeability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信