{"title":"利用legende - kolmogorov - arnold网络方法求解全非线性monge - ampantere方程","authors":"Bingcheng Hu , Lixiang Jin , Zhaoxiang Li","doi":"10.1016/j.cnsns.2025.109388","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a novel neural network framework, the Legendre-Kolmogorov-Arnold Network (Legendre-KAN) method, designed to solve fully nonlinear Monge-Ampère equations with Dirichlet boundary conditions. The architecture leverages the orthogonality of Legendre polynomials as basis functions, significantly enhancing both convergence speed and solution accuracy compared to traditional methods. Furthermore, the Kolmogorov-Arnold representation theorem provides a strong theoretical foundation for the interpretability and optimization of the network. We demonstrate the effectiveness of the proposed method through numerical examples, involving both smooth and singular solutions in various dimensions. This work not only addresses the challenges of solving high-dimensional and singular Monge-Ampère equations but also highlights the potential of neural network-based approaches for complex partial differential equations. Additionally, the method is applied to the optimal transport problem in image mapping, showcasing its practical utility in geometric image transformation. This approach is expected to pave the way for further enhancement of KAN-based applications and numerical solutions of PDEs across a wide range of scientific and engineering fields.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109388"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the fully nonlinear Monge-Ampère equation using the Legendre-Kolmogorov-Arnold network method\",\"authors\":\"Bingcheng Hu , Lixiang Jin , Zhaoxiang Li\",\"doi\":\"10.1016/j.cnsns.2025.109388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a novel neural network framework, the Legendre-Kolmogorov-Arnold Network (Legendre-KAN) method, designed to solve fully nonlinear Monge-Ampère equations with Dirichlet boundary conditions. The architecture leverages the orthogonality of Legendre polynomials as basis functions, significantly enhancing both convergence speed and solution accuracy compared to traditional methods. Furthermore, the Kolmogorov-Arnold representation theorem provides a strong theoretical foundation for the interpretability and optimization of the network. We demonstrate the effectiveness of the proposed method through numerical examples, involving both smooth and singular solutions in various dimensions. This work not only addresses the challenges of solving high-dimensional and singular Monge-Ampère equations but also highlights the potential of neural network-based approaches for complex partial differential equations. Additionally, the method is applied to the optimal transport problem in image mapping, showcasing its practical utility in geometric image transformation. This approach is expected to pave the way for further enhancement of KAN-based applications and numerical solutions of PDEs across a wide range of scientific and engineering fields.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"152 \",\"pages\":\"Article 109388\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042500797X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042500797X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Solving the fully nonlinear Monge-Ampère equation using the Legendre-Kolmogorov-Arnold network method
In this paper, we propose a novel neural network framework, the Legendre-Kolmogorov-Arnold Network (Legendre-KAN) method, designed to solve fully nonlinear Monge-Ampère equations with Dirichlet boundary conditions. The architecture leverages the orthogonality of Legendre polynomials as basis functions, significantly enhancing both convergence speed and solution accuracy compared to traditional methods. Furthermore, the Kolmogorov-Arnold representation theorem provides a strong theoretical foundation for the interpretability and optimization of the network. We demonstrate the effectiveness of the proposed method through numerical examples, involving both smooth and singular solutions in various dimensions. This work not only addresses the challenges of solving high-dimensional and singular Monge-Ampère equations but also highlights the potential of neural network-based approaches for complex partial differential equations. Additionally, the method is applied to the optimal transport problem in image mapping, showcasing its practical utility in geometric image transformation. This approach is expected to pave the way for further enhancement of KAN-based applications and numerical solutions of PDEs across a wide range of scientific and engineering fields.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.