分子包装决定了在有机/二维半导体界面上光子上转换的一步与两步三重态敏化。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-11 DOI:10.1021/acsnano.5c11350
Min Xu,Cheng Sun,Guoyu Xiang,Xiangyu Shen,Yanping Liu,Haiming Zhu
{"title":"分子包装决定了在有机/二维半导体界面上光子上转换的一步与两步三重态敏化。","authors":"Min Xu,Cheng Sun,Guoyu Xiang,Xiangyu Shen,Yanping Liu,Haiming Zhu","doi":"10.1021/acsnano.5c11350","DOIUrl":null,"url":null,"abstract":"Near-infrared (NIR) photon upconversion via triplet-triplet annihilation (TTA) in emerging organic/2D semiconductor heterostructures holds great promise for light harvesting and optoelectronic applications. However, the mechanism and dynamics of the key triplet sensitization step at the organic/inorganic interface, in particular, the role of molecular packing and configuration, remain unexplored and overlooked. Herein, using rubrene/WSe2 heterostructures with a WSe2 monolayer as a near-IR sensitizer and rubrene of orthorhombic (Orth), monoclinic (Mono), and amorphous phases, as annihilators, we show NIR-to-visible photon upconversion in both heterostructures but distinctly different triplet sensitization mechanisms and pathways: one-step direct exciton Dexter energy transfer in the Mono heterostructure but two-step indirect charge-transfer-mediated triplet sensitization in the Orth heterostructure. Specifically, ultrafast hole transfer (∼5.3 ps) followed by delayed electron transfer (∼67 ps) drives two-step indirect triplet energy transfer (TET) in Orth heterostructures with a high TET quantum yield (ΦTET) of 86%. In contrast, Mono heterostructures exhibit a slow (∼20 ps) one-step direct Dexter TET with a ΦTET of 47%. Further ultraviolet photoelectron spectroscopy (UPS) and optical measurements reveal very different interfacial band alignment modulated by different molecular π-stackings despite exactly the same molecule: small intermolecular displacement and strong intermolecular coupling in Orth rubrene elevates its highest occupied molecular orbital (HOMO) level, efficiently driving sequential charge transfer pathway, while weak coupling occurs in the Mono phase restricting TET to the Dexter mechanism. This work firmly unravels molecular packing as an overlooked critical factor in governing triplet sensitization pathways and efficiencies at the organic/2D semiconductor interface, providing design and optimization principles for solid-state photon upconversions.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"102 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Packing Dictates One-Step vs Two-Step Triplet Sensitization for Photon Upconversion at the Organic/2D Semiconductor Interface.\",\"authors\":\"Min Xu,Cheng Sun,Guoyu Xiang,Xiangyu Shen,Yanping Liu,Haiming Zhu\",\"doi\":\"10.1021/acsnano.5c11350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-infrared (NIR) photon upconversion via triplet-triplet annihilation (TTA) in emerging organic/2D semiconductor heterostructures holds great promise for light harvesting and optoelectronic applications. However, the mechanism and dynamics of the key triplet sensitization step at the organic/inorganic interface, in particular, the role of molecular packing and configuration, remain unexplored and overlooked. Herein, using rubrene/WSe2 heterostructures with a WSe2 monolayer as a near-IR sensitizer and rubrene of orthorhombic (Orth), monoclinic (Mono), and amorphous phases, as annihilators, we show NIR-to-visible photon upconversion in both heterostructures but distinctly different triplet sensitization mechanisms and pathways: one-step direct exciton Dexter energy transfer in the Mono heterostructure but two-step indirect charge-transfer-mediated triplet sensitization in the Orth heterostructure. Specifically, ultrafast hole transfer (∼5.3 ps) followed by delayed electron transfer (∼67 ps) drives two-step indirect triplet energy transfer (TET) in Orth heterostructures with a high TET quantum yield (ΦTET) of 86%. In contrast, Mono heterostructures exhibit a slow (∼20 ps) one-step direct Dexter TET with a ΦTET of 47%. Further ultraviolet photoelectron spectroscopy (UPS) and optical measurements reveal very different interfacial band alignment modulated by different molecular π-stackings despite exactly the same molecule: small intermolecular displacement and strong intermolecular coupling in Orth rubrene elevates its highest occupied molecular orbital (HOMO) level, efficiently driving sequential charge transfer pathway, while weak coupling occurs in the Mono phase restricting TET to the Dexter mechanism. This work firmly unravels molecular packing as an overlooked critical factor in governing triplet sensitization pathways and efficiencies at the organic/2D semiconductor interface, providing design and optimization principles for solid-state photon upconversions.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c11350\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c11350","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在新兴的有机/二维半导体异质结构中,通过三重态-三重态湮灭(TTA)进行近红外(NIR)光子上转换,在光捕获和光电子应用方面具有很大的前景。然而,有机/无机界面上关键的三重态敏化步骤的机制和动力学,特别是分子包装和构型的作用,仍然未被探索和忽视。本文采用WSe2单层的rubrene/WSe2异质结构作为近红外敏化剂,采用正交相(Orth)、单斜相(Mono)和非晶相的rubrene作为湮灭剂,在这两种异质结构中均显示了近红外到可见光光子的上转换,但三三重态敏化机制和途径明显不同:Mono异质结构中有一步直接激子Dexter能量转移,而北方异质结构中有两步间接电荷转移介导的三三重态敏化。具体来说,超快空穴转移(~ 5.3 ps)和延迟电子转移(~ 67 ps)在北异质结构中驱动两步间接三重态能量转移(TET), TET量子产率高达86% (ΦTET)。相比之下,Mono异质结构表现出缓慢的(~ 20 ps)一步直接Dexter TET, ΦTET为47%。进一步的紫外光电子能谱(UPS)和光学测量显示,尽管完全相同的分子,但不同分子π堆叠所调制的界面带排列却截然不同:北rubrene的小分子间位移和强分子间耦合提高了其最高已占据分子轨道(HOMO)水平,有效地驱动了顺序电荷转移途径,而在Mono相中发生的弱耦合限制了TET的Dexter机制。这项工作坚定地揭示了分子包装作为控制有机/二维半导体界面三重态敏化途径和效率的一个被忽视的关键因素,为固态光子上转换提供了设计和优化原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Packing Dictates One-Step vs Two-Step Triplet Sensitization for Photon Upconversion at the Organic/2D Semiconductor Interface.
Near-infrared (NIR) photon upconversion via triplet-triplet annihilation (TTA) in emerging organic/2D semiconductor heterostructures holds great promise for light harvesting and optoelectronic applications. However, the mechanism and dynamics of the key triplet sensitization step at the organic/inorganic interface, in particular, the role of molecular packing and configuration, remain unexplored and overlooked. Herein, using rubrene/WSe2 heterostructures with a WSe2 monolayer as a near-IR sensitizer and rubrene of orthorhombic (Orth), monoclinic (Mono), and amorphous phases, as annihilators, we show NIR-to-visible photon upconversion in both heterostructures but distinctly different triplet sensitization mechanisms and pathways: one-step direct exciton Dexter energy transfer in the Mono heterostructure but two-step indirect charge-transfer-mediated triplet sensitization in the Orth heterostructure. Specifically, ultrafast hole transfer (∼5.3 ps) followed by delayed electron transfer (∼67 ps) drives two-step indirect triplet energy transfer (TET) in Orth heterostructures with a high TET quantum yield (ΦTET) of 86%. In contrast, Mono heterostructures exhibit a slow (∼20 ps) one-step direct Dexter TET with a ΦTET of 47%. Further ultraviolet photoelectron spectroscopy (UPS) and optical measurements reveal very different interfacial band alignment modulated by different molecular π-stackings despite exactly the same molecule: small intermolecular displacement and strong intermolecular coupling in Orth rubrene elevates its highest occupied molecular orbital (HOMO) level, efficiently driving sequential charge transfer pathway, while weak coupling occurs in the Mono phase restricting TET to the Dexter mechanism. This work firmly unravels molecular packing as an overlooked critical factor in governing triplet sensitization pathways and efficiencies at the organic/2D semiconductor interface, providing design and optimization principles for solid-state photon upconversions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信