金属有机分解油墨对铜纳米颗粒的渗透对CO电还原质量活性的影响。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juhyung Choi,Sejin Park,Dayeon Kim,Hyun Chul Kim,Hyewon Yun,Yewon Hong,Hyun Ji An,Taemin Lee,Noho Lee,Jaeeun Kim,Dae-Hyun Nam,Hyung-Suk Oh,Yun Jeong Hwang
{"title":"金属有机分解油墨对铜纳米颗粒的渗透对CO电还原质量活性的影响。","authors":"Juhyung Choi,Sejin Park,Dayeon Kim,Hyun Chul Kim,Hyewon Yun,Yewon Hong,Hyun Ji An,Taemin Lee,Noho Lee,Jaeeun Kim,Dae-Hyun Nam,Hyung-Suk Oh,Yun Jeong Hwang","doi":"10.1021/acs.nanolett.5c04051","DOIUrl":null,"url":null,"abstract":"Achieving stable operation at high currents remains challenging for gas diffusion electrode (GDE)-based CO electrolyzers. Herein, we demonstrate the importance of Cu nanoparticle infiltration into the microporous layer to enrich local CO accessibility and mitigate electrolyte crossover. A facile GDE preparation method is developed via the doctor-blading method using a Cu metal-organic decomposition (Cu MOD) ink to produce well-dispersed nanoparticles across the porous layer. This design produces highly selective C2+ products at -1200 mA cm-2 from the CO electroreduction reaction, achieving a remarkably high mass activity of approximately -28,000 A g-1. It is found that the Cu electrodes prepared by MOD improve a stable balanced gas-liquid-solid interface by CO transport across the hydrophobic microenvironment of the inherent microporous layer. Our insights offer perspectives on a scalable strategy for optimizing catalyst positioning and advancing stable GDEs with high mass activity.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu Nanoparticle Infiltration via Metal-Organic Decomposition Ink for Superior Mass Activity in CO Electroreduction.\",\"authors\":\"Juhyung Choi,Sejin Park,Dayeon Kim,Hyun Chul Kim,Hyewon Yun,Yewon Hong,Hyun Ji An,Taemin Lee,Noho Lee,Jaeeun Kim,Dae-Hyun Nam,Hyung-Suk Oh,Yun Jeong Hwang\",\"doi\":\"10.1021/acs.nanolett.5c04051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving stable operation at high currents remains challenging for gas diffusion electrode (GDE)-based CO electrolyzers. Herein, we demonstrate the importance of Cu nanoparticle infiltration into the microporous layer to enrich local CO accessibility and mitigate electrolyte crossover. A facile GDE preparation method is developed via the doctor-blading method using a Cu metal-organic decomposition (Cu MOD) ink to produce well-dispersed nanoparticles across the porous layer. This design produces highly selective C2+ products at -1200 mA cm-2 from the CO electroreduction reaction, achieving a remarkably high mass activity of approximately -28,000 A g-1. It is found that the Cu electrodes prepared by MOD improve a stable balanced gas-liquid-solid interface by CO transport across the hydrophobic microenvironment of the inherent microporous layer. Our insights offer perspectives on a scalable strategy for optimizing catalyst positioning and advancing stable GDEs with high mass activity.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c04051\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c04051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于基于气体扩散电极(GDE)的CO电解槽来说,在大电流下实现稳定运行仍然是一个挑战。在此,我们证明了Cu纳米颗粒渗透到微孔层中对于丰富局部CO可及性和减轻电解质交叉的重要性。利用Cu金属有机分解(Cu MOD)油墨,开发了一种简便的GDE制备方法。该设计在-1200 mA cm-2的CO电还原反应中产生高选择性的C2+产物,实现了大约-28,000 a g-1的高质量活性。结果表明,利用MOD制备的Cu电极通过CO在固有微孔层疏水微环境中的输运,改善了稳定的气-液-固平衡界面。我们的见解为优化催化剂定位和推进具有高质量活性的稳定gde提供了可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cu Nanoparticle Infiltration via Metal-Organic Decomposition Ink for Superior Mass Activity in CO Electroreduction.
Achieving stable operation at high currents remains challenging for gas diffusion electrode (GDE)-based CO electrolyzers. Herein, we demonstrate the importance of Cu nanoparticle infiltration into the microporous layer to enrich local CO accessibility and mitigate electrolyte crossover. A facile GDE preparation method is developed via the doctor-blading method using a Cu metal-organic decomposition (Cu MOD) ink to produce well-dispersed nanoparticles across the porous layer. This design produces highly selective C2+ products at -1200 mA cm-2 from the CO electroreduction reaction, achieving a remarkably high mass activity of approximately -28,000 A g-1. It is found that the Cu electrodes prepared by MOD improve a stable balanced gas-liquid-solid interface by CO transport across the hydrophobic microenvironment of the inherent microporous layer. Our insights offer perspectives on a scalable strategy for optimizing catalyst positioning and advancing stable GDEs with high mass activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信