水凝胶驱动的逆境转化:按需超声开关策略加速糖尿病伤口愈合

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-10 DOI:10.1021/acsnano.5c14917
Fuhong Yang, , , Jingqi Lv, , , Xiaorong Gao, , , Kangxin Zhang, , , Yang Wang, , , Lingting Huang*, , , Zhen Yang*, , and , Wei Huang*, 
{"title":"水凝胶驱动的逆境转化:按需超声开关策略加速糖尿病伤口愈合","authors":"Fuhong Yang,&nbsp;, ,&nbsp;Jingqi Lv,&nbsp;, ,&nbsp;Xiaorong Gao,&nbsp;, ,&nbsp;Kangxin Zhang,&nbsp;, ,&nbsp;Yang Wang,&nbsp;, ,&nbsp;Lingting Huang*,&nbsp;, ,&nbsp;Zhen Yang*,&nbsp;, and ,&nbsp;Wei Huang*,&nbsp;","doi":"10.1021/acsnano.5c14917","DOIUrl":null,"url":null,"abstract":"<p >Chronic nonhealing diabetic wounds are characterized by excessive reactive oxygen species (ROS) accumulation, local hypoxia, and bacterial infection, which exacerbate tissue necrosis. Current treatments face challenges in simultaneously effective antibacterial activity, elimination of chronic inflammation, and wound healing against the adverse wound microenvironment. Here, we introduce an injectable polyoxometalate–hyaluronic acid hydrogel (POMHH), which incorporates chemically reduced molybdenum (Mo)-based polyoxometalate (POM) nanoclusters into a dynamically cross-linked hyaluronic acid network. This POMHH demonstrates injectable adhesion and adaptation to irregular wounds while serving as a physical barrier. The POM in POMHH continuously consumes endogenous low toxic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to generate strong toxic singlet oxygen (<sup>1</sup>O<sub>2</sub>) via an oxygen-independent mechanism, ensuring potent antibacterial activity. By application of ultrasound (US), the hydrogel substrates transmit sound waves to the POM, facilitating rapid Mo ion valence state transformation (Mo<sup>5+</sup> to Mo<sup>6+</sup>), thereby inducing robust elimination of superoxide anions (<sup>·</sup>O<sub>2</sub><sup>–</sup>), hydroxyl radicals (<sup>·</sup>OH), and H<sub>2</sub>O<sub>2</sub> for sustained release of oxygen. This spatiotemporal US regulation on POMHH enables alleviating inflammation, regulating macrophage polarization, and promoting epithelial regeneration. In diabetic mouse models with a bacterial-infected wound, the POMHH demonstrates good biocompatibility, antibacterial activity, and US-triggered acceleration of wound healing, showing potential for further clinical applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 41","pages":"36813–36825"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogel-Powered Adversity Transformation: On-Demand Ultrasonic Switching Strategy for Accelerating Diabetic Wound Healing\",\"authors\":\"Fuhong Yang,&nbsp;, ,&nbsp;Jingqi Lv,&nbsp;, ,&nbsp;Xiaorong Gao,&nbsp;, ,&nbsp;Kangxin Zhang,&nbsp;, ,&nbsp;Yang Wang,&nbsp;, ,&nbsp;Lingting Huang*,&nbsp;, ,&nbsp;Zhen Yang*,&nbsp;, and ,&nbsp;Wei Huang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c14917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chronic nonhealing diabetic wounds are characterized by excessive reactive oxygen species (ROS) accumulation, local hypoxia, and bacterial infection, which exacerbate tissue necrosis. Current treatments face challenges in simultaneously effective antibacterial activity, elimination of chronic inflammation, and wound healing against the adverse wound microenvironment. Here, we introduce an injectable polyoxometalate–hyaluronic acid hydrogel (POMHH), which incorporates chemically reduced molybdenum (Mo)-based polyoxometalate (POM) nanoclusters into a dynamically cross-linked hyaluronic acid network. This POMHH demonstrates injectable adhesion and adaptation to irregular wounds while serving as a physical barrier. The POM in POMHH continuously consumes endogenous low toxic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to generate strong toxic singlet oxygen (<sup>1</sup>O<sub>2</sub>) via an oxygen-independent mechanism, ensuring potent antibacterial activity. By application of ultrasound (US), the hydrogel substrates transmit sound waves to the POM, facilitating rapid Mo ion valence state transformation (Mo<sup>5+</sup> to Mo<sup>6+</sup>), thereby inducing robust elimination of superoxide anions (<sup>·</sup>O<sub>2</sub><sup>–</sup>), hydroxyl radicals (<sup>·</sup>OH), and H<sub>2</sub>O<sub>2</sub> for sustained release of oxygen. This spatiotemporal US regulation on POMHH enables alleviating inflammation, regulating macrophage polarization, and promoting epithelial regeneration. In diabetic mouse models with a bacterial-infected wound, the POMHH demonstrates good biocompatibility, antibacterial activity, and US-triggered acceleration of wound healing, showing potential for further clinical applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 41\",\"pages\":\"36813–36825\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c14917\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c14917","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

慢性不愈合的糖尿病伤口以活性氧(ROS)积累过多、局部缺氧和细菌感染为特征,从而加剧组织坏死。目前的治疗方法面临着同时有效抗菌活性、消除慢性炎症和对抗不良伤口微环境的伤口愈合的挑战。在这里,我们介绍了一种可注射的多金属氧酸-透明质酸水凝胶(POMHH),它将化学还原的钼基多金属氧酸(POM)纳米团簇结合到一个动态交联的透明质酸网络中。这种POMHH表现出可注射的粘附性和对不规则伤口的适应性,同时作为物理屏障。POMHH中的POM通过不依赖氧的机制,不断消耗内源性低毒过氧化氢(H2O2),生成强毒单线态氧(1O2),确保了强大的抗菌活性。通过超声波(US),水凝胶底物将声波传输到POM,促进Mo离子价态(Mo5+到Mo6+)的快速转变,从而诱导超氧阴离子(·O2 -)、羟基自由基(·OH)和H2O2的强力清除,实现氧气的持续释放。美国对POMHH的时空调控能够减轻炎症,调节巨噬细胞极化,促进上皮再生。在具有细菌感染伤口的糖尿病小鼠模型中,POMHH显示出良好的生物相容性,抗菌活性和us触发的伤口愈合加速,显示出进一步临床应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogel-Powered Adversity Transformation: On-Demand Ultrasonic Switching Strategy for Accelerating Diabetic Wound Healing

Hydrogel-Powered Adversity Transformation: On-Demand Ultrasonic Switching Strategy for Accelerating Diabetic Wound Healing

Chronic nonhealing diabetic wounds are characterized by excessive reactive oxygen species (ROS) accumulation, local hypoxia, and bacterial infection, which exacerbate tissue necrosis. Current treatments face challenges in simultaneously effective antibacterial activity, elimination of chronic inflammation, and wound healing against the adverse wound microenvironment. Here, we introduce an injectable polyoxometalate–hyaluronic acid hydrogel (POMHH), which incorporates chemically reduced molybdenum (Mo)-based polyoxometalate (POM) nanoclusters into a dynamically cross-linked hyaluronic acid network. This POMHH demonstrates injectable adhesion and adaptation to irregular wounds while serving as a physical barrier. The POM in POMHH continuously consumes endogenous low toxic hydrogen peroxide (H2O2) to generate strong toxic singlet oxygen (1O2) via an oxygen-independent mechanism, ensuring potent antibacterial activity. By application of ultrasound (US), the hydrogel substrates transmit sound waves to the POM, facilitating rapid Mo ion valence state transformation (Mo5+ to Mo6+), thereby inducing robust elimination of superoxide anions (·O2), hydroxyl radicals (·OH), and H2O2 for sustained release of oxygen. This spatiotemporal US regulation on POMHH enables alleviating inflammation, regulating macrophage polarization, and promoting epithelial regeneration. In diabetic mouse models with a bacterial-infected wound, the POMHH demonstrates good biocompatibility, antibacterial activity, and US-triggered acceleration of wound healing, showing potential for further clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信