Kartik Kulkarni,Gabriella Quinn,Jared Dela Rosa,Sean Goetsch,Vrushali Pandit,Lin Wang,Akane Sakaguchi,Sushama Sivakumar,Nikhil V Munshi
{"title":"HAND2侵入核仁凝聚物,开创了谱系特异性心脏起搏器基因程序。","authors":"Kartik Kulkarni,Gabriella Quinn,Jared Dela Rosa,Sean Goetsch,Vrushali Pandit,Lin Wang,Akane Sakaguchi,Sushama Sivakumar,Nikhil V Munshi","doi":"10.1038/s41467-025-64076-9","DOIUrl":null,"url":null,"abstract":"Although best known as the site for ribosome assembly, the nucleolus organizes heterochromatin into transcriptionally repressed Nucleolus-Associated Domains (NADs). NADs harbor many genes involved in cell-type specification, yet the mechanisms by which transcription factors (TFs) access this heterochromatin to activate gene expression remain unknown. Using a model of TF-induced cardiac pacemaker reprogramming, we conclusively establish that nucleolar localization of HAND2 is required for successful lineage conversion. Moreover, we perform unbiased transcriptional profiling to demonstrate that pacemaker gene programs are highly compartmentalized within the nucleus. Finally, we show that HAND2 homodimers invade nucleolar condensates and concentrate within the nucleolus to bind palindromic motifs required for activating lineage-specific enhancers buried within NADs. Taken together, our data highlight a key role for the nucleolus in orchestrating pacemaker gene expression by HAND2. More broadly, these results suggest that TF localization to sub-nuclear heterochromatin domains may represent a potent strategy for activating lineage-specific gene programs.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"154 1","pages":"9024"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HAND2 invades nucleolar condensates to pioneer lineage-specific cardiac pacemaker gene programs.\",\"authors\":\"Kartik Kulkarni,Gabriella Quinn,Jared Dela Rosa,Sean Goetsch,Vrushali Pandit,Lin Wang,Akane Sakaguchi,Sushama Sivakumar,Nikhil V Munshi\",\"doi\":\"10.1038/s41467-025-64076-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although best known as the site for ribosome assembly, the nucleolus organizes heterochromatin into transcriptionally repressed Nucleolus-Associated Domains (NADs). NADs harbor many genes involved in cell-type specification, yet the mechanisms by which transcription factors (TFs) access this heterochromatin to activate gene expression remain unknown. Using a model of TF-induced cardiac pacemaker reprogramming, we conclusively establish that nucleolar localization of HAND2 is required for successful lineage conversion. Moreover, we perform unbiased transcriptional profiling to demonstrate that pacemaker gene programs are highly compartmentalized within the nucleus. Finally, we show that HAND2 homodimers invade nucleolar condensates and concentrate within the nucleolus to bind palindromic motifs required for activating lineage-specific enhancers buried within NADs. Taken together, our data highlight a key role for the nucleolus in orchestrating pacemaker gene expression by HAND2. More broadly, these results suggest that TF localization to sub-nuclear heterochromatin domains may represent a potent strategy for activating lineage-specific gene programs.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"154 1\",\"pages\":\"9024\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64076-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64076-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Although best known as the site for ribosome assembly, the nucleolus organizes heterochromatin into transcriptionally repressed Nucleolus-Associated Domains (NADs). NADs harbor many genes involved in cell-type specification, yet the mechanisms by which transcription factors (TFs) access this heterochromatin to activate gene expression remain unknown. Using a model of TF-induced cardiac pacemaker reprogramming, we conclusively establish that nucleolar localization of HAND2 is required for successful lineage conversion. Moreover, we perform unbiased transcriptional profiling to demonstrate that pacemaker gene programs are highly compartmentalized within the nucleus. Finally, we show that HAND2 homodimers invade nucleolar condensates and concentrate within the nucleolus to bind palindromic motifs required for activating lineage-specific enhancers buried within NADs. Taken together, our data highlight a key role for the nucleolus in orchestrating pacemaker gene expression by HAND2. More broadly, these results suggest that TF localization to sub-nuclear heterochromatin domains may represent a potent strategy for activating lineage-specific gene programs.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.