面向类液体表面的儿茶酚键合通用闪光涂层

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Jing, Lei Zhang, Ruonan Hao, Lizhong Li, Xuanyao Wang, Yunlong Han, Qianhao Xiao, Zhenqiang Shi, Jining Sun
{"title":"面向类液体表面的儿茶酚键合通用闪光涂层","authors":"Hao Jing, Lei Zhang, Ruonan Hao, Lizhong Li, Xuanyao Wang, Yunlong Han, Qianhao Xiao, Zhenqiang Shi, Jining Sun","doi":"10.1002/adfm.202519210","DOIUrl":null,"url":null,"abstract":"Anchoring flexible macromolecules onto smooth substrates to create liquid‐like surfaces (LLSs) has revolutionized repellent surface technologies. However, real‐world applications of the LLSs are highly restricted due to the lack of a universal bonding mechanism between those macromolecule termini and diverse surfaces. Herein, a new perspective on interfacial bonding mechanisms for flexible macromolecule immobilization is proposed. A universal flash coating (UFC) technology has been developed based on a rationally designed linear polydimethylsiloxane (PDMS) molecule terminated with catechol at one end (L‐PDMS‐Cat). The terminated catechol unit enables L‐PDMS‐Cat to anchor onto various metallic, inorganic, and organic substrates in a mussel adhesion‐mimicking manner. A nanoscale coating of 24.3 ± 1.2 nm thickness is achieved within seconds via a simple spray process. The obtained UFC surface can repel fluids with ultralow surface tensions (<jats:italic>γ</jats:italic> &lt; 20 mN m<jats:sup>−1</jats:sup>), exhibit an impressively low ice shear strength of 16.7 ± 10.5 kPa, and offer exceptional resistance to solvent soaking. Moreover, the theoretical model of temperature‐dependent rheology reveals that retaining molecular configurations with unconfined chain segments in the bonded coating is the key to preserving the interfacial slippage of such surfaces. The study provides a new paradigm for molecular design of multifunctional liquid‐like surfaces for wide‐ranging applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"159 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catechol‐Bonded Universal Flash Coating toward Liquid‐Like Surfaces\",\"authors\":\"Hao Jing, Lei Zhang, Ruonan Hao, Lizhong Li, Xuanyao Wang, Yunlong Han, Qianhao Xiao, Zhenqiang Shi, Jining Sun\",\"doi\":\"10.1002/adfm.202519210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anchoring flexible macromolecules onto smooth substrates to create liquid‐like surfaces (LLSs) has revolutionized repellent surface technologies. However, real‐world applications of the LLSs are highly restricted due to the lack of a universal bonding mechanism between those macromolecule termini and diverse surfaces. Herein, a new perspective on interfacial bonding mechanisms for flexible macromolecule immobilization is proposed. A universal flash coating (UFC) technology has been developed based on a rationally designed linear polydimethylsiloxane (PDMS) molecule terminated with catechol at one end (L‐PDMS‐Cat). The terminated catechol unit enables L‐PDMS‐Cat to anchor onto various metallic, inorganic, and organic substrates in a mussel adhesion‐mimicking manner. A nanoscale coating of 24.3 ± 1.2 nm thickness is achieved within seconds via a simple spray process. The obtained UFC surface can repel fluids with ultralow surface tensions (<jats:italic>γ</jats:italic> &lt; 20 mN m<jats:sup>−1</jats:sup>), exhibit an impressively low ice shear strength of 16.7 ± 10.5 kPa, and offer exceptional resistance to solvent soaking. Moreover, the theoretical model of temperature‐dependent rheology reveals that retaining molecular configurations with unconfined chain segments in the bonded coating is the key to preserving the interfacial slippage of such surfaces. The study provides a new paradigm for molecular design of multifunctional liquid‐like surfaces for wide‐ranging applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202519210\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202519210","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将柔性大分子锚定在光滑的衬底上以产生液体状表面(LLSs)已经彻底改变了驱避表面技术。然而,由于这些大分子末端和不同表面之间缺乏通用的键合机制,LLSs的实际应用受到高度限制。本文为研究柔性大分子固定化的界面键合机制提供了一个新的视角。基于合理设计的线性聚二甲基硅氧烷(PDMS)分子(L‐PDMS‐Cat),开发了一种通用闪光涂层(UFC)技术。端接的儿茶酚单元使L - PDMS - Cat能够以模仿贻贝粘附的方式锚定在各种金属、无机和有机基质上。通过简单的喷涂工艺,可以在几秒钟内获得24.3±1.2 nm厚度的纳米涂层。得到的UFC表面可以抵抗具有超低表面张力(γ < 20 mN m−1)的流体,表现出令人印象深刻的低冰抗剪强度(16.7±10.5 kPa),并且具有优异的耐溶剂浸泡性。此外,温度依赖流变学的理论模型表明,在键合涂层中保持无约束链段的分子构型是保持此类表面界面滑移的关键。该研究为多功能类液体表面的分子设计提供了一个新的范例,具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catechol‐Bonded Universal Flash Coating toward Liquid‐Like Surfaces
Anchoring flexible macromolecules onto smooth substrates to create liquid‐like surfaces (LLSs) has revolutionized repellent surface technologies. However, real‐world applications of the LLSs are highly restricted due to the lack of a universal bonding mechanism between those macromolecule termini and diverse surfaces. Herein, a new perspective on interfacial bonding mechanisms for flexible macromolecule immobilization is proposed. A universal flash coating (UFC) technology has been developed based on a rationally designed linear polydimethylsiloxane (PDMS) molecule terminated with catechol at one end (L‐PDMS‐Cat). The terminated catechol unit enables L‐PDMS‐Cat to anchor onto various metallic, inorganic, and organic substrates in a mussel adhesion‐mimicking manner. A nanoscale coating of 24.3 ± 1.2 nm thickness is achieved within seconds via a simple spray process. The obtained UFC surface can repel fluids with ultralow surface tensions (γ < 20 mN m−1), exhibit an impressively low ice shear strength of 16.7 ± 10.5 kPa, and offer exceptional resistance to solvent soaking. Moreover, the theoretical model of temperature‐dependent rheology reveals that retaining molecular configurations with unconfined chain segments in the bonded coating is the key to preserving the interfacial slippage of such surfaces. The study provides a new paradigm for molecular design of multifunctional liquid‐like surfaces for wide‐ranging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信