阴离子介导的溶剂化使高性能钠有机电池的界面稳定

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kai Zhu, Zhengguang Song, Junxiong Wu, Danjing Lin, Xing Chen, Yixiong Wu, Xiaochuan Chen, Xiaoyan Li, Yuming Chen
{"title":"阴离子介导的溶剂化使高性能钠有机电池的界面稳定","authors":"Kai Zhu, Zhengguang Song, Junxiong Wu, Danjing Lin, Xing Chen, Yixiong Wu, Xiaochuan Chen, Xiaoyan Li, Yuming Chen","doi":"10.1002/adfm.202518967","DOIUrl":null,"url":null,"abstract":"Sodium‐organic batteries (SOBs), which leverage abundant and low‐cost materials, are a promising energy storage technology. However, their practical viability is largely hinged on the instability of the reactive sodium metal anode and the degradation of organic cathodes in conventional electrolytes. Herein, a weakly solvating electrolyte is designed, comprising 2 M sodium bis(fluorosulfonyl)imide in a non‐fluorinated co‐solvent of 1,2‐dimethoxypropane and cyclopentyl methyl ether. This unique formulation promotes an anion‐reinforced Na⁺ solvation sheath, which generates a robust, inorganic‐rich solid‐electrolyte interphase (SEI). This tailored interphase stabilizes the anode by promoting uniform sodium deposition and mitigates cathode degradation by forming a protective cathode‐electrolyte interphase (CEI). As a result, the electrolyte enables highly reversible Na plating/stripping, achieving a Coulombic efficiency of 98.6% over 800 cycles at 0.5 mA cm<jats:sup>−2</jats:sup>. When coupled with a perylene‐3,4,9,10‐tetracarboxylic dianhydride cathode, the SOB demonstrates exceptional stability, retaining 97.8% of its capacity after 300 cycles at 1 C (100 mA g<jats:sup>−1</jats:sup>). This work demonstrates that engineering an anion‐mediated solvation structure through targeted solvent‐solvent interactions is a promising strategy for developing cost‐effective and long‐lasting SOBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"44 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anion‐Mediated Solvation Enables Robust Interphases for High‐Performance Sodium‐Organic Batteries\",\"authors\":\"Kai Zhu, Zhengguang Song, Junxiong Wu, Danjing Lin, Xing Chen, Yixiong Wu, Xiaochuan Chen, Xiaoyan Li, Yuming Chen\",\"doi\":\"10.1002/adfm.202518967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sodium‐organic batteries (SOBs), which leverage abundant and low‐cost materials, are a promising energy storage technology. However, their practical viability is largely hinged on the instability of the reactive sodium metal anode and the degradation of organic cathodes in conventional electrolytes. Herein, a weakly solvating electrolyte is designed, comprising 2 M sodium bis(fluorosulfonyl)imide in a non‐fluorinated co‐solvent of 1,2‐dimethoxypropane and cyclopentyl methyl ether. This unique formulation promotes an anion‐reinforced Na⁺ solvation sheath, which generates a robust, inorganic‐rich solid‐electrolyte interphase (SEI). This tailored interphase stabilizes the anode by promoting uniform sodium deposition and mitigates cathode degradation by forming a protective cathode‐electrolyte interphase (CEI). As a result, the electrolyte enables highly reversible Na plating/stripping, achieving a Coulombic efficiency of 98.6% over 800 cycles at 0.5 mA cm<jats:sup>−2</jats:sup>. When coupled with a perylene‐3,4,9,10‐tetracarboxylic dianhydride cathode, the SOB demonstrates exceptional stability, retaining 97.8% of its capacity after 300 cycles at 1 C (100 mA g<jats:sup>−1</jats:sup>). This work demonstrates that engineering an anion‐mediated solvation structure through targeted solvent‐solvent interactions is a promising strategy for developing cost‐effective and long‐lasting SOBs.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202518967\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202518967","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钠有机电池(SOBs)是一种很有前途的储能技术,它利用了丰富的低成本材料。然而,它们的实际可行性在很大程度上取决于活性金属钠阳极的不稳定性和传统电解质中有机阴极的降解。本文设计了一种弱溶剂化电解质,由2 M双(氟磺酰基)亚胺钠在1,2 -二甲氧基丙烷和环戊基甲基醚的非氟共溶剂中组成。这种独特的配方促进了阴离子增强的Na +溶剂化鞘,从而产生了坚固的、富含无机的固体电解质界面(SEI)。这种定制的界面相通过促进均匀的钠沉积来稳定阳极,并通过形成保护性阴极-电解质界面(CEI)来减轻阴极降解。因此,该电解质能够实现高度可逆的Na电镀/剥离,在0.5 mA cm - 2下,在800次循环中实现98.6%的库仑效率。当与苝- 3,4,9,10 -四羧酸二酐阴极耦合时,SOB表现出优异的稳定性,在1℃(100 mA g−1)下循环300次后,其容量仍保持97.8%。这项工作表明,通过靶向溶剂-溶剂相互作用来设计阴离子介导的溶剂化结构是开发具有成本效益和长效sob的有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anion‐Mediated Solvation Enables Robust Interphases for High‐Performance Sodium‐Organic Batteries
Sodium‐organic batteries (SOBs), which leverage abundant and low‐cost materials, are a promising energy storage technology. However, their practical viability is largely hinged on the instability of the reactive sodium metal anode and the degradation of organic cathodes in conventional electrolytes. Herein, a weakly solvating electrolyte is designed, comprising 2 M sodium bis(fluorosulfonyl)imide in a non‐fluorinated co‐solvent of 1,2‐dimethoxypropane and cyclopentyl methyl ether. This unique formulation promotes an anion‐reinforced Na⁺ solvation sheath, which generates a robust, inorganic‐rich solid‐electrolyte interphase (SEI). This tailored interphase stabilizes the anode by promoting uniform sodium deposition and mitigates cathode degradation by forming a protective cathode‐electrolyte interphase (CEI). As a result, the electrolyte enables highly reversible Na plating/stripping, achieving a Coulombic efficiency of 98.6% over 800 cycles at 0.5 mA cm−2. When coupled with a perylene‐3,4,9,10‐tetracarboxylic dianhydride cathode, the SOB demonstrates exceptional stability, retaining 97.8% of its capacity after 300 cycles at 1 C (100 mA g−1). This work demonstrates that engineering an anion‐mediated solvation structure through targeted solvent‐solvent interactions is a promising strategy for developing cost‐effective and long‐lasting SOBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信