黑洞跃迁,AdS时空和距离猜想

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Alvaro Herráez, Dieter Lüst, Carmine Montella
{"title":"黑洞跃迁,AdS时空和距离猜想","authors":"Alvaro Herráez, Dieter Lüst, Carmine Montella","doi":"10.1103/6c4j-dp9v","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the connection between black hole instabilities and Swampland constraints, presenting new insights into the anti–de Sitter (AdS) distance conjecture. By examining the scale at which horizon instabilities of Schwarzschild-AdS</a:mi>d</a:mi></a:msub></a:math> black holes take place—<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi mathvariant=\"normal\">Λ</c:mi><c:mrow><c:mi>BH</c:mi></c:mrow></c:msub></c:math>—we uncover a universal scaling relation, <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:msub><f:mi mathvariant=\"normal\">Λ</f:mi><f:mrow><f:mi>BH</f:mi></f:mrow></f:msub><f:mo>∼</f:mo><f:mo stretchy=\"false\">|</f:mo><f:msub><f:mi mathvariant=\"normal\">Λ</f:mi><f:mi>AdS</f:mi></f:msub><f:msup><f:mo stretchy=\"false\">|</f:mo><f:mi>α</f:mi></f:msup></f:math>, with <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mfrac><l:mn>1</l:mn><l:mi>d</l:mi></l:mfrac><l:mo>≤</l:mo><l:mi>α</l:mi><l:mo>≤</l:mo><l:mfrac><l:mn>1</l:mn><l:mn>2</l:mn></l:mfrac></l:math>, linking the emergence of towers of states directly to instability scales as <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msub><n:mi mathvariant=\"normal\">Λ</n:mi><n:mi>AdS</n:mi></n:msub><n:mo stretchy=\"false\">→</n:mo><n:mn>0</n:mn></n:math>. This approach circumvents the explicit dependence on field-space distances, offering a refined formulation of the AdS distance conjecture grounded in physical black hole scales. From a top-down perspective, we find that these instability scales correspond precisely to the Gregory-Laflamme and Horowitz-Polchinski transitions, as expected for the flat space limit, and consistently with our proposed bounds. Furthermore, revisiting explicit calculations in type IIB string theory on <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mrow><r:msub><r:mrow><r:mi>AdS</r:mi></r:mrow><r:mrow><r:mn>5</r:mn></r:mrow></r:msub><r:mo>×</r:mo><r:msup><r:mi>S</r:mi><r:mn>5</r:mn></r:msup></r:mrow></r:math>, we illustrate how higher-derivative corrections may alter these bounds, potentially extending their applicability toward the interior of moduli space. Using also general results about gravitational collapse in AdS, our analysis points toward a possible breakdown of the conjecture in <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mi>d</t:mi><t:mo>&gt;</t:mo><t:mn>10</t:mn></t:math>, suggesting an intriguing upper limit on the number of noncompact spacetime dimensions. Finally, we briefly discuss parallel considerations and implications for the dS case.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"7 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black hole transitions, AdS spacetime, and the distance conjecture\",\"authors\":\"Alvaro Herráez, Dieter Lüst, Carmine Montella\",\"doi\":\"10.1103/6c4j-dp9v\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the connection between black hole instabilities and Swampland constraints, presenting new insights into the anti–de Sitter (AdS) distance conjecture. By examining the scale at which horizon instabilities of Schwarzschild-AdS</a:mi>d</a:mi></a:msub></a:math> black holes take place—<c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi mathvariant=\\\"normal\\\">Λ</c:mi><c:mrow><c:mi>BH</c:mi></c:mrow></c:msub></c:math>—we uncover a universal scaling relation, <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:msub><f:mi mathvariant=\\\"normal\\\">Λ</f:mi><f:mrow><f:mi>BH</f:mi></f:mrow></f:msub><f:mo>∼</f:mo><f:mo stretchy=\\\"false\\\">|</f:mo><f:msub><f:mi mathvariant=\\\"normal\\\">Λ</f:mi><f:mi>AdS</f:mi></f:msub><f:msup><f:mo stretchy=\\\"false\\\">|</f:mo><f:mi>α</f:mi></f:msup></f:math>, with <l:math xmlns:l=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><l:mfrac><l:mn>1</l:mn><l:mi>d</l:mi></l:mfrac><l:mo>≤</l:mo><l:mi>α</l:mi><l:mo>≤</l:mo><l:mfrac><l:mn>1</l:mn><l:mn>2</l:mn></l:mfrac></l:math>, linking the emergence of towers of states directly to instability scales as <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:msub><n:mi mathvariant=\\\"normal\\\">Λ</n:mi><n:mi>AdS</n:mi></n:msub><n:mo stretchy=\\\"false\\\">→</n:mo><n:mn>0</n:mn></n:math>. This approach circumvents the explicit dependence on field-space distances, offering a refined formulation of the AdS distance conjecture grounded in physical black hole scales. From a top-down perspective, we find that these instability scales correspond precisely to the Gregory-Laflamme and Horowitz-Polchinski transitions, as expected for the flat space limit, and consistently with our proposed bounds. Furthermore, revisiting explicit calculations in type IIB string theory on <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:mrow><r:msub><r:mrow><r:mi>AdS</r:mi></r:mrow><r:mrow><r:mn>5</r:mn></r:mrow></r:msub><r:mo>×</r:mo><r:msup><r:mi>S</r:mi><r:mn>5</r:mn></r:msup></r:mrow></r:math>, we illustrate how higher-derivative corrections may alter these bounds, potentially extending their applicability toward the interior of moduli space. Using also general results about gravitational collapse in AdS, our analysis points toward a possible breakdown of the conjecture in <t:math xmlns:t=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><t:mi>d</t:mi><t:mo>&gt;</t:mo><t:mn>10</t:mn></t:math>, suggesting an intriguing upper limit on the number of noncompact spacetime dimensions. Finally, we briefly discuss parallel considerations and implications for the dS case.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/6c4j-dp9v\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/6c4j-dp9v","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了黑洞不稳定性和沼泽约束之间的联系,为反德西特(AdS)距离猜想提供了新的见解。通过研究史瓦西- adsd黑洞视界不稳定性发生的尺度-ΛBH-we,发现了一个普遍的尺度关系ΛBH ~ |ΛAdS|α,其中1d≤α≤12,将状态塔的出现直接与不稳定尺度ΛAdS→0联系起来。这种方法规避了对场-空间距离的明确依赖,提供了基于物理黑洞尺度的AdS距离猜想的精炼公式。从自上而下的角度来看,我们发现这些不稳定性尺度精确地对应于Gregory-Laflamme和Horowitz-Polchinski转换,正如平坦空间极限所期望的那样,并且与我们提出的界限一致。此外,在AdS5×S5上回顾IIB型弦理论的显式计算,我们说明了高导数修正如何改变这些界限,潜在地将它们的适用性扩展到模空间的内部。我们的分析还利用了AdS中引力坍缩的一般结果,指出了d>;10中猜想的可能瓦解,提出了非紧时空维度数量的一个有趣的上限。最后,我们简要讨论了对dS案例的并行考虑和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black hole transitions, AdS spacetime, and the distance conjecture
In this work, we investigate the connection between black hole instabilities and Swampland constraints, presenting new insights into the anti–de Sitter (AdS) distance conjecture. By examining the scale at which horizon instabilities of Schwarzschild-AdSd black holes take place—ΛBH—we uncover a universal scaling relation, ΛBH|ΛAdS|α, with 1dα12, linking the emergence of towers of states directly to instability scales as ΛAdS0. This approach circumvents the explicit dependence on field-space distances, offering a refined formulation of the AdS distance conjecture grounded in physical black hole scales. From a top-down perspective, we find that these instability scales correspond precisely to the Gregory-Laflamme and Horowitz-Polchinski transitions, as expected for the flat space limit, and consistently with our proposed bounds. Furthermore, revisiting explicit calculations in type IIB string theory on AdS5×S5, we illustrate how higher-derivative corrections may alter these bounds, potentially extending their applicability toward the interior of moduli space. Using also general results about gravitational collapse in AdS, our analysis points toward a possible breakdown of the conjecture in d>10, suggesting an intriguing upper limit on the number of noncompact spacetime dimensions. Finally, we briefly discuss parallel considerations and implications for the dS case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信