用D轨道离域电子催化控制界面离子偶极相互作用加速低温锂金属电池

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing Zhang, Fangqi Liu, Rong He, Qinghua Guan, Na Tian, Jian Wu, Zhenjiang Cao, Shikai Yin, Yongzheng Zhang, Lujie Jia, Xifei Li, Caiyin You, Haitao Liu, Meinan Liu, Yidong Miao, Hongzhen Lin, Jian Wang
{"title":"用D轨道离域电子催化控制界面离子偶极相互作用加速低温锂金属电池","authors":"Jing Zhang, Fangqi Liu, Rong He, Qinghua Guan, Na Tian, Jian Wu, Zhenjiang Cao, Shikai Yin, Yongzheng Zhang, Lujie Jia, Xifei Li, Caiyin You, Haitao Liu, Meinan Liu, Yidong Miao, Hongzhen Lin, Jian Wang","doi":"10.1002/adma.202510894","DOIUrl":null,"url":null,"abstract":"Low‐temperature lithium metal batteries (LT‐LMBs) are increasingly desired for higher energy density and longer lifespan. However, due to organic electrolyte solidification, LT‐LMBs are impeded by huge barriers resulting from the hindrance of larger solvation shells with strong ion‐dipole interactions, leading to depressive Li kinetics and severe dendrite formation. Herein, interfacial catalysis by constructing electron delocalization <jats:italic>d</jats:italic>‐orbital metal oxides toward the ion‐dipole interactions is pioneered to accelerate the larger Li(solvents)<jats:italic><jats:sub>x</jats:sub></jats:italic><jats:sup>+</jats:sup> dissociation under the low‐temperature environment. Specifically, various kinds of <jats:italic>d</jats:italic>‐orbital metal oxides (M = Ti, V, Fe, Co) with oxygen defect modulation are systematically screened and investigated for breaking the ion‐dipole interactions, and the prototyped titanium oxide with adjustable electron delocalization behave the best, as confirmed by electrochemical and theoretical experiments. Consequently, optimized Li electrodes withstand environmental robustness from 25 to −50°C, and stabilize long‐term cycling up to 1800 h and high Coulombic efficiency without any short‐circuit under −20°C. The as‐fabricated Li–S full cell enables a high‐capacity retention of 88% at 0.2 C over 200 cycles, and the high‐loading Li‐LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> cell (≈20 mg cm<jats:sup>−2</jats:sup>) demonstrates excellent capacity retention ≈100% under 0°C, providing a new guideline for adopting a catalytic strategy for achieving advanced LT‐LMBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"159 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taming Interfacial Ion‐Dipole Interactions With D‐Orbital Delocalized Electron Catalysis Expediates Low‐Temperature Li Metal Batteries\",\"authors\":\"Jing Zhang, Fangqi Liu, Rong He, Qinghua Guan, Na Tian, Jian Wu, Zhenjiang Cao, Shikai Yin, Yongzheng Zhang, Lujie Jia, Xifei Li, Caiyin You, Haitao Liu, Meinan Liu, Yidong Miao, Hongzhen Lin, Jian Wang\",\"doi\":\"10.1002/adma.202510894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low‐temperature lithium metal batteries (LT‐LMBs) are increasingly desired for higher energy density and longer lifespan. However, due to organic electrolyte solidification, LT‐LMBs are impeded by huge barriers resulting from the hindrance of larger solvation shells with strong ion‐dipole interactions, leading to depressive Li kinetics and severe dendrite formation. Herein, interfacial catalysis by constructing electron delocalization <jats:italic>d</jats:italic>‐orbital metal oxides toward the ion‐dipole interactions is pioneered to accelerate the larger Li(solvents)<jats:italic><jats:sub>x</jats:sub></jats:italic><jats:sup>+</jats:sup> dissociation under the low‐temperature environment. Specifically, various kinds of <jats:italic>d</jats:italic>‐orbital metal oxides (M = Ti, V, Fe, Co) with oxygen defect modulation are systematically screened and investigated for breaking the ion‐dipole interactions, and the prototyped titanium oxide with adjustable electron delocalization behave the best, as confirmed by electrochemical and theoretical experiments. Consequently, optimized Li electrodes withstand environmental robustness from 25 to −50°C, and stabilize long‐term cycling up to 1800 h and high Coulombic efficiency without any short‐circuit under −20°C. The as‐fabricated Li–S full cell enables a high‐capacity retention of 88% at 0.2 C over 200 cycles, and the high‐loading Li‐LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> cell (≈20 mg cm<jats:sup>−2</jats:sup>) demonstrates excellent capacity retention ≈100% under 0°C, providing a new guideline for adopting a catalytic strategy for achieving advanced LT‐LMBs.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202510894\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510894","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

低温锂金属电池(LT - lmb)越来越需要更高的能量密度和更长的寿命。然而,由于有机电解质的凝固,由于具有强离子偶极子相互作用的较大的溶剂化壳的阻碍,LT‐lmb受到巨大屏障的阻碍,导致Li动力学抑制和严重的枝晶形成。本文首先通过构建电子离域d轨道金属氧化物的离子偶极子相互作用来促进低温环境下较大Li(溶剂)x+解离的界面催化。具体来说,系统地筛选了各种具有氧缺陷调制的d轨道金属氧化物(M = Ti, V, Fe, Co),并研究了它们破坏离子偶极子相互作用的能力,电化学和理论实验证实,具有可调节电子离域的原型氧化钛表现最好。因此,优化后的锂电极可以承受25至- 50°C的环境鲁棒性,并且在- 20°C下稳定长达1800 h的长期循环和高库仑效率,而不会发生任何短路。制备的Li - s全电池在0.2℃下循环200次可保持88%的高容量,而高负载Li - LiNi0.8Co0.1Mn0.1O2电池(≈20 mg cm - 2)在0℃下可保持100%的高容量,为采用催化策略实现先进的LT - lmb提供了新的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taming Interfacial Ion‐Dipole Interactions With D‐Orbital Delocalized Electron Catalysis Expediates Low‐Temperature Li Metal Batteries
Low‐temperature lithium metal batteries (LT‐LMBs) are increasingly desired for higher energy density and longer lifespan. However, due to organic electrolyte solidification, LT‐LMBs are impeded by huge barriers resulting from the hindrance of larger solvation shells with strong ion‐dipole interactions, leading to depressive Li kinetics and severe dendrite formation. Herein, interfacial catalysis by constructing electron delocalization d‐orbital metal oxides toward the ion‐dipole interactions is pioneered to accelerate the larger Li(solvents)x+ dissociation under the low‐temperature environment. Specifically, various kinds of d‐orbital metal oxides (M = Ti, V, Fe, Co) with oxygen defect modulation are systematically screened and investigated for breaking the ion‐dipole interactions, and the prototyped titanium oxide with adjustable electron delocalization behave the best, as confirmed by electrochemical and theoretical experiments. Consequently, optimized Li electrodes withstand environmental robustness from 25 to −50°C, and stabilize long‐term cycling up to 1800 h and high Coulombic efficiency without any short‐circuit under −20°C. The as‐fabricated Li–S full cell enables a high‐capacity retention of 88% at 0.2 C over 200 cycles, and the high‐loading Li‐LiNi0.8Co0.1Mn0.1O2 cell (≈20 mg cm−2) demonstrates excellent capacity retention ≈100% under 0°C, providing a new guideline for adopting a catalytic strategy for achieving advanced LT‐LMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信