酵母中Ty1反转录转座子限制特异性的分子决定因素探讨。

IF 3.7 2区 生物学 Q1 GENETICS & HEREDITY
Sean L Beckwith, Matthew A Cottee, J Adam Hannon-Hatfield, Abigail C Newman, Emma C Walker, Justin R Romero, Jonathan P Stoye, Ian A Taylor, David J Garfinkel
{"title":"酵母中Ty1反转录转座子限制特异性的分子决定因素探讨。","authors":"Sean L Beckwith, Matthew A Cottee, J Adam Hannon-Hatfield, Abigail C Newman, Emma C Walker, Justin R Romero, Jonathan P Stoye, Ian A Taylor, David J Garfinkel","doi":"10.1371/journal.pgen.1011898","DOIUrl":null,"url":null,"abstract":"<p><p>The evolutionary history of retrotransposons and their hosts shapes the dynamics of transposition and restriction. The Pseudoviridae of yeast includes multiple Ty1 LTR-retrotransposon subfamilies. Saccharomyces cerevisiae prevents uncontrolled retrotransposition of Ty1 subfamilies using distinct mechanisms: canonical Ty1 is inhibited by a self-encoded restriction factor, p22/p18, whereas Ty1' is inhibited by an endogenized restriction factor, Drt2. The minimal inhibitory fragment of both restriction factors (p18m and Drt2m) is a conserved C-terminal capsid domain. Here, we use biophysical and genetic approaches to demonstrate that p18m and Drt2m are highly specific to their subfamilies. Although the crystal structures of p18m and Drt2m are similar, three divergent residues found in a conserved hydrophobic interface direct restriction specificity. By mutating these three residues, we re-target each restriction factor to the opposite transposon. Our work highlights how a common lattice-poisoning mechanism of restriction evolved from independent evolutionary trajectories in closely related retrotransposon subfamilies. These data raise the possibility that similar capsid-capsid interactions may exist in other transposons/viruses and that highly specific inhibitors could be engineered to target capsid interfaces.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 10","pages":"e1011898"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the molecular determinants of Ty1 retrotransposon restriction specificity in yeast.\",\"authors\":\"Sean L Beckwith, Matthew A Cottee, J Adam Hannon-Hatfield, Abigail C Newman, Emma C Walker, Justin R Romero, Jonathan P Stoye, Ian A Taylor, David J Garfinkel\",\"doi\":\"10.1371/journal.pgen.1011898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolutionary history of retrotransposons and their hosts shapes the dynamics of transposition and restriction. The Pseudoviridae of yeast includes multiple Ty1 LTR-retrotransposon subfamilies. Saccharomyces cerevisiae prevents uncontrolled retrotransposition of Ty1 subfamilies using distinct mechanisms: canonical Ty1 is inhibited by a self-encoded restriction factor, p22/p18, whereas Ty1' is inhibited by an endogenized restriction factor, Drt2. The minimal inhibitory fragment of both restriction factors (p18m and Drt2m) is a conserved C-terminal capsid domain. Here, we use biophysical and genetic approaches to demonstrate that p18m and Drt2m are highly specific to their subfamilies. Although the crystal structures of p18m and Drt2m are similar, three divergent residues found in a conserved hydrophobic interface direct restriction specificity. By mutating these three residues, we re-target each restriction factor to the opposite transposon. Our work highlights how a common lattice-poisoning mechanism of restriction evolved from independent evolutionary trajectories in closely related retrotransposon subfamilies. These data raise the possibility that similar capsid-capsid interactions may exist in other transposons/viruses and that highly specific inhibitors could be engineered to target capsid interfaces.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 10\",\"pages\":\"e1011898\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011898\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011898","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

逆转录转座子及其宿主的进化史决定了其转位和限制的动力学过程。酵母假病毒科包括多个Ty1 ltr -反转录转座子亚家族。酿酒酵母通过不同的机制阻止Ty1亚家族不受控制的逆转录转位:典型的Ty1被自编码的限制因子p22/p18抑制,而Ty1'被内源性限制因子Drt2抑制。两个限制性因子(p18m和Drt2m)的最小抑制片段是一个保守的c端衣壳结构域。在这里,我们使用生物物理和遗传方法来证明p18m和Drt2m对它们的亚家族具有高度特异性。虽然p18m和Drt2m的晶体结构相似,但在一个保守的疏水界面上发现了三个不同的残基,直接限制了特异性。通过突变这三个残基,我们将每个限制因子重新定位到相反的转座子上。我们的工作强调了在密切相关的反转录转座子亚家族中,一个共同的格中毒限制机制是如何从独立的进化轨迹进化而来的。这些数据提出了其他转座子/病毒中可能存在类似衣壳-衣壳相互作用的可能性,并且可以设计出高度特异性的抑制剂来靶向衣壳界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing the molecular determinants of Ty1 retrotransposon restriction specificity in yeast.

The evolutionary history of retrotransposons and their hosts shapes the dynamics of transposition and restriction. The Pseudoviridae of yeast includes multiple Ty1 LTR-retrotransposon subfamilies. Saccharomyces cerevisiae prevents uncontrolled retrotransposition of Ty1 subfamilies using distinct mechanisms: canonical Ty1 is inhibited by a self-encoded restriction factor, p22/p18, whereas Ty1' is inhibited by an endogenized restriction factor, Drt2. The minimal inhibitory fragment of both restriction factors (p18m and Drt2m) is a conserved C-terminal capsid domain. Here, we use biophysical and genetic approaches to demonstrate that p18m and Drt2m are highly specific to their subfamilies. Although the crystal structures of p18m and Drt2m are similar, three divergent residues found in a conserved hydrophobic interface direct restriction specificity. By mutating these three residues, we re-target each restriction factor to the opposite transposon. Our work highlights how a common lattice-poisoning mechanism of restriction evolved from independent evolutionary trajectories in closely related retrotransposon subfamilies. These data raise the possibility that similar capsid-capsid interactions may exist in other transposons/viruses and that highly specific inhibitors could be engineered to target capsid interfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信