小鼠和人类纹状体投射神经元的比较-体树突树突,棘和硅分析。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2025-10-09 eCollection Date: 2025-10-01 DOI:10.1371/journal.pcbi.1013569
Alexander Kozlov, Lidia Blazquez-Llorca, Ruth Benavides-Piccione, Asta Kastanauskaite, Ana I Rojo, Alberto Muñoz, Antonio Cuadrado, Javier DeFelipe, Sten Grillner
{"title":"小鼠和人类纹状体投射神经元的比较-体树突树突,棘和硅分析。","authors":"Alexander Kozlov, Lidia Blazquez-Llorca, Ruth Benavides-Piccione, Asta Kastanauskaite, Ana I Rojo, Alberto Muñoz, Antonio Cuadrado, Javier DeFelipe, Sten Grillner","doi":"10.1371/journal.pcbi.1013569","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction of the basal ganglia is implicated in a wide range of neurological and psychiatric disorders. Our understanding of the operation of the basal ganglia is largely derived on data from studies conducted on mice, which are frequently used as model organisms for various clinical conditions. The striatum, the largest compartment of the basal ganglia, consists of 90-95% striatal projection neurons (SPNs). It is therefore crucial to establish if human and mouse SPNs have distinct or similar properties, as this has implications for the relevance of mouse models for understanding the human striatum. To address this, we compared the general organization of the somato-dendritic tree of SPNs, the dimensions of the dendrites, the density and size of spines (spine surface area), and ion channel subtypes in human and mouse SPNs. Our findings reveal that human SPNs are significantly larger, but otherwise the organisation of the dendritic tree (dendrogram) with an average of approximately 5 primary dendrites, is similar in both species. Additionally in both humans and mice, over 90% of the spines are located on the terminal branches of each dendrite. Human spines are somewhat larger (4.3 versus 3.1 μm2) and the terminal dendrites have a uniform diameter in both humans and mice, although somewhat broader in the latter (1.0 versus 0.6 μm). The composition of ion channels is also largely conserved. These data have been used to simulate human SPNs building on our previous detailed simulation of mouse SPNs. We conclude that the human SPNs essentially appear as enlarged versions of the mouse SPNs. This similarity suggests that both species process information in a comparable manner, supporting the relevance of mouse models for studying the human striatum.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 10","pages":"e1013569"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12530558/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mouse and human striatal projection neurons compared - somatodendritic arbor, spines and in silico analyses.\",\"authors\":\"Alexander Kozlov, Lidia Blazquez-Llorca, Ruth Benavides-Piccione, Asta Kastanauskaite, Ana I Rojo, Alberto Muñoz, Antonio Cuadrado, Javier DeFelipe, Sten Grillner\",\"doi\":\"10.1371/journal.pcbi.1013569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysfunction of the basal ganglia is implicated in a wide range of neurological and psychiatric disorders. Our understanding of the operation of the basal ganglia is largely derived on data from studies conducted on mice, which are frequently used as model organisms for various clinical conditions. The striatum, the largest compartment of the basal ganglia, consists of 90-95% striatal projection neurons (SPNs). It is therefore crucial to establish if human and mouse SPNs have distinct or similar properties, as this has implications for the relevance of mouse models for understanding the human striatum. To address this, we compared the general organization of the somato-dendritic tree of SPNs, the dimensions of the dendrites, the density and size of spines (spine surface area), and ion channel subtypes in human and mouse SPNs. Our findings reveal that human SPNs are significantly larger, but otherwise the organisation of the dendritic tree (dendrogram) with an average of approximately 5 primary dendrites, is similar in both species. Additionally in both humans and mice, over 90% of the spines are located on the terminal branches of each dendrite. Human spines are somewhat larger (4.3 versus 3.1 μm2) and the terminal dendrites have a uniform diameter in both humans and mice, although somewhat broader in the latter (1.0 versus 0.6 μm). The composition of ion channels is also largely conserved. These data have been used to simulate human SPNs building on our previous detailed simulation of mouse SPNs. We conclude that the human SPNs essentially appear as enlarged versions of the mouse SPNs. This similarity suggests that both species process information in a comparable manner, supporting the relevance of mouse models for studying the human striatum.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 10\",\"pages\":\"e1013569\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12530558/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013569\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013569","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基底神经节功能障碍与广泛的神经和精神疾病有关。我们对基底神经节运作的理解很大程度上来源于对小鼠的研究数据,小鼠经常被用作各种临床条件的模式生物。纹状体是基底节区最大的隔室,由90-95%的纹状体投射神经元(spn)组成。因此,确定人类和小鼠的spn是否具有不同或相似的特性是至关重要的,因为这对理解人类纹状体的小鼠模型的相关性具有重要意义。为了解决这个问题,我们比较了人类和小鼠spn的体细胞树突树的一般组织,树突的尺寸,棘的密度和大小(脊柱表面积)以及离子通道亚型。我们的研究结果表明,人类的spn明显更大,但除此之外,树突树的组织(树突图)平均约为5个初级树突,在这两个物种中是相似的。此外,在人类和小鼠中,超过90%的棘位于每个树突的末端分支上。人类的脊柱略大(4.3 μm2比3.1 μm2),人类和小鼠的末端树突直径相同,但后者略宽(1.0 μm2比0.6 μm2)。离子通道的组成在很大程度上也是保守的。这些数据被用来模拟人类spn,建立在我们之前对小鼠spn的详细模拟的基础上。我们得出的结论是,人类spn基本上是小鼠spn的放大版本。这种相似性表明,这两个物种以类似的方式处理信息,支持小鼠模型与研究人类纹状体的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mouse and human striatal projection neurons compared - somatodendritic arbor, spines and in silico analyses.

Dysfunction of the basal ganglia is implicated in a wide range of neurological and psychiatric disorders. Our understanding of the operation of the basal ganglia is largely derived on data from studies conducted on mice, which are frequently used as model organisms for various clinical conditions. The striatum, the largest compartment of the basal ganglia, consists of 90-95% striatal projection neurons (SPNs). It is therefore crucial to establish if human and mouse SPNs have distinct or similar properties, as this has implications for the relevance of mouse models for understanding the human striatum. To address this, we compared the general organization of the somato-dendritic tree of SPNs, the dimensions of the dendrites, the density and size of spines (spine surface area), and ion channel subtypes in human and mouse SPNs. Our findings reveal that human SPNs are significantly larger, but otherwise the organisation of the dendritic tree (dendrogram) with an average of approximately 5 primary dendrites, is similar in both species. Additionally in both humans and mice, over 90% of the spines are located on the terminal branches of each dendrite. Human spines are somewhat larger (4.3 versus 3.1 μm2) and the terminal dendrites have a uniform diameter in both humans and mice, although somewhat broader in the latter (1.0 versus 0.6 μm). The composition of ion channels is also largely conserved. These data have been used to simulate human SPNs building on our previous detailed simulation of mouse SPNs. We conclude that the human SPNs essentially appear as enlarged versions of the mouse SPNs. This similarity suggests that both species process information in a comparable manner, supporting the relevance of mouse models for studying the human striatum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信