{"title":"环境运动先于自运动调制航向估计。","authors":"Liana Nafisa Saftari, Jongmin Moon, Oh-Sang Kwon","doi":"10.1371/journal.pcbi.1013571","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of a moving observer to accurately perceive their heading direction is essential for effective locomotion and balance control. While previous studies have shown that observers integrate visual and vestibular signals collected during movement, it remains unclear whether and how observers use visual signals collected before their movement to perceive heading direction. Here we investigate the effect of environmental motion that occurred ahead of self-motion on the perception of self-motion. Human observers sat on a motion platform, viewed visual motion stimuli, and then reported their perceived heading after the platform moved. The results reveal that environmental motion presented before the observers' movement significantly modulates their heading perception. We account for this effect using a normative computational model that takes into account the causal relationship between visual signals generated before and during the observers' movement. Overall, our study highlights the crucial role of environmental motion presented before self-motion in heading perception, broadening the current perspective on the computational mechanisms behind heading estimation.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 10","pages":"e1013571"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527208/pdf/","citationCount":"0","resultStr":"{\"title\":\"Environmental motion presented ahead of self-motion modulates heading direction estimation.\",\"authors\":\"Liana Nafisa Saftari, Jongmin Moon, Oh-Sang Kwon\",\"doi\":\"10.1371/journal.pcbi.1013571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability of a moving observer to accurately perceive their heading direction is essential for effective locomotion and balance control. While previous studies have shown that observers integrate visual and vestibular signals collected during movement, it remains unclear whether and how observers use visual signals collected before their movement to perceive heading direction. Here we investigate the effect of environmental motion that occurred ahead of self-motion on the perception of self-motion. Human observers sat on a motion platform, viewed visual motion stimuli, and then reported their perceived heading after the platform moved. The results reveal that environmental motion presented before the observers' movement significantly modulates their heading perception. We account for this effect using a normative computational model that takes into account the causal relationship between visual signals generated before and during the observers' movement. Overall, our study highlights the crucial role of environmental motion presented before self-motion in heading perception, broadening the current perspective on the computational mechanisms behind heading estimation.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 10\",\"pages\":\"e1013571\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013571\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013571","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Environmental motion presented ahead of self-motion modulates heading direction estimation.
The ability of a moving observer to accurately perceive their heading direction is essential for effective locomotion and balance control. While previous studies have shown that observers integrate visual and vestibular signals collected during movement, it remains unclear whether and how observers use visual signals collected before their movement to perceive heading direction. Here we investigate the effect of environmental motion that occurred ahead of self-motion on the perception of self-motion. Human observers sat on a motion platform, viewed visual motion stimuli, and then reported their perceived heading after the platform moved. The results reveal that environmental motion presented before the observers' movement significantly modulates their heading perception. We account for this effect using a normative computational model that takes into account the causal relationship between visual signals generated before and during the observers' movement. Overall, our study highlights the crucial role of environmental motion presented before self-motion in heading perception, broadening the current perspective on the computational mechanisms behind heading estimation.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.