一个用于火灾原因分类的混合注意框架。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-10-09 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0333131
Heng Peng, Kun Zhu
{"title":"一个用于火灾原因分类的混合注意框架。","authors":"Heng Peng, Kun Zhu","doi":"10.1371/journal.pone.0333131","DOIUrl":null,"url":null,"abstract":"<p><p>Automated cause classification of fire accident reports (FIREAR) is crucial for enhancing public safety and developing data-driven prevention strategies. However, existing deep learning models often struggle with the unique challenges these documents present-namely their extreme length, high semantic noise, and fragmented causal information. To overcome these limitations, we propose the Fire Accident Reports Attention Mechanism (FAR-AM), a novel hybrid deep learning framework. FAR-AM first uses a large language model (LLM) to preprocess lengthy raw reports into concise, high-signal summaries. Its core architecture then employs an inter-layer self-attention mechanism to dynamically fuse hierarchical features across all encoder layers of BERT. The fused features are subsequently processed by a TextCNN for final classification. We evaluate FAR-AM on AGNews(title), AGNews(content), THUCNews, and our real-world FIREAR corpus. FAR-AM outperforms strong transformer baselines, including RoBERTa. On the FIREAR dataset, it achieves 73.58% accuracy and 70.65% F1. A comprehensive ablation study further validates the contribution of each component in the multi-stage framework. These results indicate that, for complex domain-specific tasks, specialized hybrid architectures can be more effective and robust than monolithic, general-purpose models.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 10","pages":"e0333131"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510603/pdf/","citationCount":"0","resultStr":"{\"title\":\"FAR-AM: A hybrid attention framework for fire cause classification.\",\"authors\":\"Heng Peng, Kun Zhu\",\"doi\":\"10.1371/journal.pone.0333131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automated cause classification of fire accident reports (FIREAR) is crucial for enhancing public safety and developing data-driven prevention strategies. However, existing deep learning models often struggle with the unique challenges these documents present-namely their extreme length, high semantic noise, and fragmented causal information. To overcome these limitations, we propose the Fire Accident Reports Attention Mechanism (FAR-AM), a novel hybrid deep learning framework. FAR-AM first uses a large language model (LLM) to preprocess lengthy raw reports into concise, high-signal summaries. Its core architecture then employs an inter-layer self-attention mechanism to dynamically fuse hierarchical features across all encoder layers of BERT. The fused features are subsequently processed by a TextCNN for final classification. We evaluate FAR-AM on AGNews(title), AGNews(content), THUCNews, and our real-world FIREAR corpus. FAR-AM outperforms strong transformer baselines, including RoBERTa. On the FIREAR dataset, it achieves 73.58% accuracy and 70.65% F1. A comprehensive ablation study further validates the contribution of each component in the multi-stage framework. These results indicate that, for complex domain-specific tasks, specialized hybrid architectures can be more effective and robust than monolithic, general-purpose models.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 10\",\"pages\":\"e0333131\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0333131\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0333131","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

火灾事故报告的自动原因分类(FIREAR)对于加强公共安全和制定数据驱动的预防策略至关重要。然而,现有的深度学习模型经常与这些文档所面临的独特挑战作斗争——即它们的极端长度、高语义噪声和碎片化的因果信息。为了克服这些限制,我们提出了一种新的混合深度学习框架——火灾事故报告注意机制(FAR-AM)。FAR-AM首先使用大型语言模型(LLM)将冗长的原始报告预处理成简洁、高信号的摘要。然后,它的核心架构采用层间自关注机制来动态融合BERT所有编码器层的分层特征。融合的特征随后由TextCNN进行处理以进行最终分类。我们在AGNews(标题)、AGNews(内容)、THUCNews和我们真实世界的FIREAR语料库上评估FAR-AM。FAR-AM优于强变压器基线,包括RoBERTa。在FIREAR数据集上,准确率达到73.58%,F1达到70.65%。一项全面的消融研究进一步验证了多阶段框架中每个组成部分的贡献。这些结果表明,对于复杂的特定于领域的任务,专门的混合体系结构可以比单一的通用模型更有效和健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FAR-AM: A hybrid attention framework for fire cause classification.

Automated cause classification of fire accident reports (FIREAR) is crucial for enhancing public safety and developing data-driven prevention strategies. However, existing deep learning models often struggle with the unique challenges these documents present-namely their extreme length, high semantic noise, and fragmented causal information. To overcome these limitations, we propose the Fire Accident Reports Attention Mechanism (FAR-AM), a novel hybrid deep learning framework. FAR-AM first uses a large language model (LLM) to preprocess lengthy raw reports into concise, high-signal summaries. Its core architecture then employs an inter-layer self-attention mechanism to dynamically fuse hierarchical features across all encoder layers of BERT. The fused features are subsequently processed by a TextCNN for final classification. We evaluate FAR-AM on AGNews(title), AGNews(content), THUCNews, and our real-world FIREAR corpus. FAR-AM outperforms strong transformer baselines, including RoBERTa. On the FIREAR dataset, it achieves 73.58% accuracy and 70.65% F1. A comprehensive ablation study further validates the contribution of each component in the multi-stage framework. These results indicate that, for complex domain-specific tasks, specialized hybrid architectures can be more effective and robust than monolithic, general-purpose models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信