通过线粒体矿化治疗胶质母细胞瘤的可变尺寸自反馈纳米马达。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tiantian Chen, Yu Duan, Yingjie Wang, Tiantian Liang, Shiluan Liu, Xue Xia, Chun Mao, Mimi Wan
{"title":"通过线粒体矿化治疗胶质母细胞瘤的可变尺寸自反馈纳米马达。","authors":"Tiantian Chen, Yu Duan, Yingjie Wang, Tiantian Liang, Shiluan Liu, Xue Xia, Chun Mao, Mimi Wan","doi":"10.1038/s41467-025-64020-x","DOIUrl":null,"url":null,"abstract":"<p><p>Developing targeted treatment for glioblastoma is crucial but challenging. Herein, we propose a size-variable self-feedback nanomotor system, utilizing the unique high-calcium microenvironment of glioblastoma to prevent its progression through mitochondrial mineralization. It comprises three components: a self-feedback degradable lipid shell (containing nitric oxide-releasing lipid and nitric oxide-responsive degradable lipid), a motion nanomotor core (containing L-arginine derivatives and carboxyl-rich zwitterionic monomers for Ca<sup>2+</sup> recruitment), and curcumin (inhibiting Ca<sup>2+</sup> efflux). Nitric oxide-releasing lipid can be catalyzed by inducible nitric oxide synthase to release nitric oxide, triggering nitric oxide-responsive degradable lipid degradation. Initially, the larger nanomotors (~ 500 nm) penetrate the blood-brain barrier via chemotaxis towards glioblastoma microenvironment. During chemotaxis, the lipid shell gradually degrades, releasing smaller nanomotor core (~50 nm), which can target mitochondria and recruit Ca<sup>2+</sup> to induce mitochondrial mineralization together with curcumin, inhibiting glioblastoma progression. This work may provide a glioblastoma-specific treatment strategy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8990"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511397/pdf/","citationCount":"0","resultStr":"{\"title\":\"Size-variable self-feedback nanomotors for glioblastoma therapy via mitochondrial mineralization.\",\"authors\":\"Tiantian Chen, Yu Duan, Yingjie Wang, Tiantian Liang, Shiluan Liu, Xue Xia, Chun Mao, Mimi Wan\",\"doi\":\"10.1038/s41467-025-64020-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing targeted treatment for glioblastoma is crucial but challenging. Herein, we propose a size-variable self-feedback nanomotor system, utilizing the unique high-calcium microenvironment of glioblastoma to prevent its progression through mitochondrial mineralization. It comprises three components: a self-feedback degradable lipid shell (containing nitric oxide-releasing lipid and nitric oxide-responsive degradable lipid), a motion nanomotor core (containing L-arginine derivatives and carboxyl-rich zwitterionic monomers for Ca<sup>2+</sup> recruitment), and curcumin (inhibiting Ca<sup>2+</sup> efflux). Nitric oxide-releasing lipid can be catalyzed by inducible nitric oxide synthase to release nitric oxide, triggering nitric oxide-responsive degradable lipid degradation. Initially, the larger nanomotors (~ 500 nm) penetrate the blood-brain barrier via chemotaxis towards glioblastoma microenvironment. During chemotaxis, the lipid shell gradually degrades, releasing smaller nanomotor core (~50 nm), which can target mitochondria and recruit Ca<sup>2+</sup> to induce mitochondrial mineralization together with curcumin, inhibiting glioblastoma progression. This work may provide a glioblastoma-specific treatment strategy.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8990\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511397/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64020-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64020-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

开发胶质母细胞瘤的靶向治疗方法至关重要,但也具有挑战性。在此,我们提出了一个可变尺寸的自反馈纳米运动系统,利用胶质母细胞瘤独特的高钙微环境来防止其通过线粒体矿化进展。它由三部分组成:自反馈可降解脂质壳(含有一氧化氮释放脂质和一氧化氮反应可降解脂质),运动纳米运动核(含有l-精氨酸衍生物和富含羧基的两性离子单体,用于Ca2+招募)和姜黄素(抑制Ca2+外排)。一氧化氮释放脂质可被诱导型一氧化氮合酶催化释放一氧化氮,触发一氧化氮反应性可降解脂质降解。最初,较大的纳米马达(~ 500 nm)通过趋化作用穿透血脑屏障,进入胶质母细胞瘤微环境。趋化过程中,脂质壳逐渐降解,释放更小的纳米运动核(~50 nm),可以靶向线粒体,招募Ca2+,与姜黄素一起诱导线粒体矿化,抑制胶质母细胞瘤的进展。这项工作可能提供一种胶质母细胞瘤特异性治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size-variable self-feedback nanomotors for glioblastoma therapy via mitochondrial mineralization.

Developing targeted treatment for glioblastoma is crucial but challenging. Herein, we propose a size-variable self-feedback nanomotor system, utilizing the unique high-calcium microenvironment of glioblastoma to prevent its progression through mitochondrial mineralization. It comprises three components: a self-feedback degradable lipid shell (containing nitric oxide-releasing lipid and nitric oxide-responsive degradable lipid), a motion nanomotor core (containing L-arginine derivatives and carboxyl-rich zwitterionic monomers for Ca2+ recruitment), and curcumin (inhibiting Ca2+ efflux). Nitric oxide-releasing lipid can be catalyzed by inducible nitric oxide synthase to release nitric oxide, triggering nitric oxide-responsive degradable lipid degradation. Initially, the larger nanomotors (~ 500 nm) penetrate the blood-brain barrier via chemotaxis towards glioblastoma microenvironment. During chemotaxis, the lipid shell gradually degrades, releasing smaller nanomotor core (~50 nm), which can target mitochondria and recruit Ca2+ to induce mitochondrial mineralization together with curcumin, inhibiting glioblastoma progression. This work may provide a glioblastoma-specific treatment strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信