揭示植物冷胁迫的信号通路:当前的见解和未来的方向。

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-09-24 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1666852
Chen Peng, Wei Hua, Jing Liu
{"title":"揭示植物冷胁迫的信号通路:当前的见解和未来的方向。","authors":"Chen Peng, Wei Hua, Jing Liu","doi":"10.3389/fpls.2025.1666852","DOIUrl":null,"url":null,"abstract":"<p><p>Cold stress is a major abiotic stress that seriously hinders plant growth and development, ultimately affecting crop yields. During the process of evolution, plants have evolved sophisticated adaptive strategies encompassing acclimation processes and tolerance mechanisms. Over the past two decades, substantial research breakthroughs have been made in elucidating the core components and complex regulatory networks underlying cold tolerance. This review systematically synthesizes the recent progress in three fundamental aspects: cold stress perception and signal transduction pathways, downstream physiological and molecular responses, and the pivotal regulatory roles of transcription factors (particularly CBF/DREB1 family) and cold-responsive miRNAs. In addition, we also investigated the intricate crosstalk between cold response and other biological processes including photoperiod sensing, flowering regulation, circadian rhythm, phytohormone signaling, and the dedicated discussion addresses how plants achieve metabolic and developmental trade-offs when allocating resources between cold defense and other vital traits. Looking forward, we propose four promising research directions: identifying novel cryo-sensors beyond currently known receptors, post-translational modification dynamics of CBF proteins, homeostatic control mechanisms among competing regulatory factors, and translational applications of cold stress pathways in precision breeding programs. Addressing these knowledge gaps will not only deepen our understanding of plant cold adaptation at molecular level, but also facilitate the development of climate-resilient crops through molecular design breeding.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1666852"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the signaling pathways of plant cold stress: current insights and future directions.\",\"authors\":\"Chen Peng, Wei Hua, Jing Liu\",\"doi\":\"10.3389/fpls.2025.1666852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cold stress is a major abiotic stress that seriously hinders plant growth and development, ultimately affecting crop yields. During the process of evolution, plants have evolved sophisticated adaptive strategies encompassing acclimation processes and tolerance mechanisms. Over the past two decades, substantial research breakthroughs have been made in elucidating the core components and complex regulatory networks underlying cold tolerance. This review systematically synthesizes the recent progress in three fundamental aspects: cold stress perception and signal transduction pathways, downstream physiological and molecular responses, and the pivotal regulatory roles of transcription factors (particularly CBF/DREB1 family) and cold-responsive miRNAs. In addition, we also investigated the intricate crosstalk between cold response and other biological processes including photoperiod sensing, flowering regulation, circadian rhythm, phytohormone signaling, and the dedicated discussion addresses how plants achieve metabolic and developmental trade-offs when allocating resources between cold defense and other vital traits. Looking forward, we propose four promising research directions: identifying novel cryo-sensors beyond currently known receptors, post-translational modification dynamics of CBF proteins, homeostatic control mechanisms among competing regulatory factors, and translational applications of cold stress pathways in precision breeding programs. Addressing these knowledge gaps will not only deepen our understanding of plant cold adaptation at molecular level, but also facilitate the development of climate-resilient crops through molecular design breeding.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":\"16 \",\"pages\":\"1666852\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2025.1666852\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1666852","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

冷胁迫是一种严重阻碍植物生长发育,最终影响作物产量的主要非生物胁迫。在进化过程中,植物进化出了复杂的适应策略,包括驯化过程和耐受性机制。在过去的二十年中,在阐明耐寒性的核心成分和复杂的调控网络方面取得了实质性的研究突破。本文从冷胁迫感知和信号转导途径、下游生理和分子反应、转录因子(特别是CBF/DREB1家族)和冷响应性mirna的关键调控作用等三个方面系统地综述了冷胁迫的最新进展。此外,我们还研究了冷响应与其他生物过程(包括光周期感知、开花调节、昼夜节律、植物激素信号传导)之间的复杂串串,并专门讨论了植物在冷防御和其他重要性状之间分配资源时如何实现代谢和发育权衡。展望未来,我们提出了四个有前景的研究方向:寻找超越现有已知受体的新型低温传感器,CBF蛋白的翻译后修饰动力学,竞争调节因子之间的稳态控制机制,以及冷胁迫途径在精密育种中的翻译应用。解决这些知识空白不仅将加深我们在分子水平上对植物冷适应的理解,而且还将通过分子设计育种促进气候适应型作物的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the signaling pathways of plant cold stress: current insights and future directions.

Unraveling the signaling pathways of plant cold stress: current insights and future directions.

Unraveling the signaling pathways of plant cold stress: current insights and future directions.

Unraveling the signaling pathways of plant cold stress: current insights and future directions.

Cold stress is a major abiotic stress that seriously hinders plant growth and development, ultimately affecting crop yields. During the process of evolution, plants have evolved sophisticated adaptive strategies encompassing acclimation processes and tolerance mechanisms. Over the past two decades, substantial research breakthroughs have been made in elucidating the core components and complex regulatory networks underlying cold tolerance. This review systematically synthesizes the recent progress in three fundamental aspects: cold stress perception and signal transduction pathways, downstream physiological and molecular responses, and the pivotal regulatory roles of transcription factors (particularly CBF/DREB1 family) and cold-responsive miRNAs. In addition, we also investigated the intricate crosstalk between cold response and other biological processes including photoperiod sensing, flowering regulation, circadian rhythm, phytohormone signaling, and the dedicated discussion addresses how plants achieve metabolic and developmental trade-offs when allocating resources between cold defense and other vital traits. Looking forward, we propose four promising research directions: identifying novel cryo-sensors beyond currently known receptors, post-translational modification dynamics of CBF proteins, homeostatic control mechanisms among competing regulatory factors, and translational applications of cold stress pathways in precision breeding programs. Addressing these knowledge gaps will not only deepen our understanding of plant cold adaptation at molecular level, but also facilitate the development of climate-resilient crops through molecular design breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信