使用新颖的深度学习模型和视频-音频-文本多模态数据预测抑郁症。

IF 3.2 3区 医学 Q2 PSYCHIATRY
Frontiers in Psychiatry Pub Date : 2025-09-24 eCollection Date: 2025-01-01 DOI:10.3389/fpsyt.2025.1602650
Yifu Li, Xueping Yang, Meng Zhao, Jiangtao Wang, Yudong Yao, Wei Qian, Shouliang Qi
{"title":"使用新颖的深度学习模型和视频-音频-文本多模态数据预测抑郁症。","authors":"Yifu Li, Xueping Yang, Meng Zhao, Jiangtao Wang, Yudong Yao, Wei Qian, Shouliang Qi","doi":"10.3389/fpsyt.2025.1602650","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Depression is a prevalent mental health disorder affecting millions of people. Traditional diagnostic methods primarily rely on self-reported questionnaires and clinical interviews, which can be subjective and vary significantly between individuals. This paper introduces the Integrative Multimodal Depression Detection Network (IMDD-Net), a novel deep-learning framework designed to enhance the accuracy of depression evaluation by leveraging both local and global features from video, audio, and text cues.</p><p><strong>Methods: </strong>The IMDD-Net integrates these multimodal data streams using the Kronecker product for multimodal fusion, facilitating deep interactions between modalities. Within the audio modality, Mel Frequency Cepstrum Coefficient (MFCC) and extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) features capture local and global acoustic properties, respectively. For video data, the TimeSformer network extracts both fine-grained and broad temporal features, while the text modality utilizes a pre-trained BERT model to obtain comprehensive contextual information. The IMDD-Net's architecture effectively combines these diverse data types to provide a holistic analysis of depressive symptoms.</p><p><strong>Results: </strong>Experimental results on the AVEC 2014 dataset demonstrate that the IMDD-Net achieves state-of-the-art performance in predicting Beck Depression Inventory-II (BDI-II) scores, with a Root Mean Square Error (RMSE) of 7.55 and a Mean Absolute Error (MAE) of 5.75. A classification to identify potential depression subjects can achieve an accuracy of 0.79.</p><p><strong>Conclusion: </strong>These results underscore the robustness and precision of the IMDD-Net, highlighting the importance of integrating local and global features across multiple modalities for accurate depression prediction.</p>","PeriodicalId":12605,"journal":{"name":"Frontiers in Psychiatry","volume":"16 ","pages":"1602650"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504862/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting depression by using a novel deep learning model and video-audio-text multimodal data.\",\"authors\":\"Yifu Li, Xueping Yang, Meng Zhao, Jiangtao Wang, Yudong Yao, Wei Qian, Shouliang Qi\",\"doi\":\"10.3389/fpsyt.2025.1602650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Depression is a prevalent mental health disorder affecting millions of people. Traditional diagnostic methods primarily rely on self-reported questionnaires and clinical interviews, which can be subjective and vary significantly between individuals. This paper introduces the Integrative Multimodal Depression Detection Network (IMDD-Net), a novel deep-learning framework designed to enhance the accuracy of depression evaluation by leveraging both local and global features from video, audio, and text cues.</p><p><strong>Methods: </strong>The IMDD-Net integrates these multimodal data streams using the Kronecker product for multimodal fusion, facilitating deep interactions between modalities. Within the audio modality, Mel Frequency Cepstrum Coefficient (MFCC) and extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) features capture local and global acoustic properties, respectively. For video data, the TimeSformer network extracts both fine-grained and broad temporal features, while the text modality utilizes a pre-trained BERT model to obtain comprehensive contextual information. The IMDD-Net's architecture effectively combines these diverse data types to provide a holistic analysis of depressive symptoms.</p><p><strong>Results: </strong>Experimental results on the AVEC 2014 dataset demonstrate that the IMDD-Net achieves state-of-the-art performance in predicting Beck Depression Inventory-II (BDI-II) scores, with a Root Mean Square Error (RMSE) of 7.55 and a Mean Absolute Error (MAE) of 5.75. A classification to identify potential depression subjects can achieve an accuracy of 0.79.</p><p><strong>Conclusion: </strong>These results underscore the robustness and precision of the IMDD-Net, highlighting the importance of integrating local and global features across multiple modalities for accurate depression prediction.</p>\",\"PeriodicalId\":12605,\"journal\":{\"name\":\"Frontiers in Psychiatry\",\"volume\":\"16 \",\"pages\":\"1602650\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fpsyt.2025.1602650\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fpsyt.2025.1602650","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

目的:抑郁症是影响数百万人的一种普遍的精神健康障碍。传统的诊断方法主要依赖于自我报告的问卷调查和临床访谈,这可能是主观的,并且在个体之间差异很大。本文介绍了综合多模态抑郁症检测网络(IMDD-Net),这是一种新型的深度学习框架,旨在通过利用视频、音频和文本线索的局部和全局特征来提高抑郁症评估的准确性。方法:IMDD-Net使用Kronecker产品集成这些多模态数据流进行多模态融合,促进模态之间的深度交互。在音频模态中,Mel频率倒频谱系数(MFCC)和扩展日内瓦极简声学参数集(eGeMAPS)特征分别捕获局部和全局声学特性。对于视频数据,TimeSformer网络提取细粒度和广泛的时间特征,而文本模态利用预训练的BERT模型来获得全面的上下文信息。IMDD-Net的体系结构有效地结合了这些不同的数据类型,以提供对抑郁症状的整体分析。结果:在AVEC 2014数据集上的实验结果表明,IMDD-Net在预测贝克抑郁量表ii (BDI-II)得分方面达到了最先进的水平,均方根误差(RMSE)为7.55,平均绝对误差(MAE)为5.75。识别潜在抑郁受试者的分类准确率为0.79。结论:这些结果强调了IMDD-Net的稳健性和精确性,强调了跨多种模式整合局部和全局特征对准确预测抑郁症的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting depression by using a novel deep learning model and video-audio-text multimodal data.

Objective: Depression is a prevalent mental health disorder affecting millions of people. Traditional diagnostic methods primarily rely on self-reported questionnaires and clinical interviews, which can be subjective and vary significantly between individuals. This paper introduces the Integrative Multimodal Depression Detection Network (IMDD-Net), a novel deep-learning framework designed to enhance the accuracy of depression evaluation by leveraging both local and global features from video, audio, and text cues.

Methods: The IMDD-Net integrates these multimodal data streams using the Kronecker product for multimodal fusion, facilitating deep interactions between modalities. Within the audio modality, Mel Frequency Cepstrum Coefficient (MFCC) and extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) features capture local and global acoustic properties, respectively. For video data, the TimeSformer network extracts both fine-grained and broad temporal features, while the text modality utilizes a pre-trained BERT model to obtain comprehensive contextual information. The IMDD-Net's architecture effectively combines these diverse data types to provide a holistic analysis of depressive symptoms.

Results: Experimental results on the AVEC 2014 dataset demonstrate that the IMDD-Net achieves state-of-the-art performance in predicting Beck Depression Inventory-II (BDI-II) scores, with a Root Mean Square Error (RMSE) of 7.55 and a Mean Absolute Error (MAE) of 5.75. A classification to identify potential depression subjects can achieve an accuracy of 0.79.

Conclusion: These results underscore the robustness and precision of the IMDD-Net, highlighting the importance of integrating local and global features across multiple modalities for accurate depression prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Psychiatry
Frontiers in Psychiatry Medicine-Psychiatry and Mental Health
CiteScore
6.20
自引率
8.50%
发文量
2813
审稿时长
14 weeks
期刊介绍: Frontiers in Psychiatry publishes rigorously peer-reviewed research across a wide spectrum of translational, basic and clinical research. Field Chief Editor Stefan Borgwardt at the University of Basel is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. The journal''s mission is to use translational approaches to improve therapeutic options for mental illness and consequently to improve patient treatment outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信