利用开尔文探针力显微镜研究氧化氮氧化物堆中埋藏电荷阱的纳米级动力学。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sungmin Yoon, Seokhoon Choi, Min-Hyun Lee, Sunho Kim, Seonghoon Jang, Hyunseong Park, Dooho Lee, Seung-Yeul Yang, Jeong Young Park
{"title":"利用开尔文探针力显微镜研究氧化氮氧化物堆中埋藏电荷阱的纳米级动力学。","authors":"Sungmin Yoon, Seokhoon Choi, Min-Hyun Lee, Sunho Kim, Seonghoon Jang, Hyunseong Park, Dooho Lee, Seung-Yeul Yang, Jeong Young Park","doi":"10.1021/acs.nanolett.5c03652","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding charge trapping and diffusion behavior is crucial for optimizing nonvolatile memory (NVM) devices, which commercially involve a silicon oxide-silicon nitride-silicon oxide (ONO) stack structure. However, studies on charge traps in ONO stack structures using Kelvin probe force microscopy (KPFM) have been limited. Here, we examine trapped charge dynamics in ONO devices using KPFM, especially trapped electrons and holes in the buried silicon nitride layer and on the exposed silicon oxide. Furthermore, we observe diffusion of trapped holes on the exposed oxide and electron diffusion within the buried nitride during the program process. As a result, the diffusion coefficients are quantified as 5.20 × 10<sup>-13</sup> cm<sup>2</sup>/s for holes trapped in the exposed oxide layer and 1.22 × 10<sup>-14</sup> cm<sup>2</sup>/s for electrons trapped in the subsurface nitride layer. Hence, we identify distinct charge dissipation in buried and surface layers, demonstrating the capability of KPFM to characterize charge-trap materials and improve NVM devices.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale Dynamics of Buried Charge Trap in Oxide-Nitride-Oxide Stacks Investigated Using Kelvin Probe Force Microscopy.\",\"authors\":\"Sungmin Yoon, Seokhoon Choi, Min-Hyun Lee, Sunho Kim, Seonghoon Jang, Hyunseong Park, Dooho Lee, Seung-Yeul Yang, Jeong Young Park\",\"doi\":\"10.1021/acs.nanolett.5c03652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding charge trapping and diffusion behavior is crucial for optimizing nonvolatile memory (NVM) devices, which commercially involve a silicon oxide-silicon nitride-silicon oxide (ONO) stack structure. However, studies on charge traps in ONO stack structures using Kelvin probe force microscopy (KPFM) have been limited. Here, we examine trapped charge dynamics in ONO devices using KPFM, especially trapped electrons and holes in the buried silicon nitride layer and on the exposed silicon oxide. Furthermore, we observe diffusion of trapped holes on the exposed oxide and electron diffusion within the buried nitride during the program process. As a result, the diffusion coefficients are quantified as 5.20 × 10<sup>-13</sup> cm<sup>2</sup>/s for holes trapped in the exposed oxide layer and 1.22 × 10<sup>-14</sup> cm<sup>2</sup>/s for electrons trapped in the subsurface nitride layer. Hence, we identify distinct charge dissipation in buried and surface layers, demonstrating the capability of KPFM to characterize charge-trap materials and improve NVM devices.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c03652\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c03652","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解电荷捕获和扩散行为对于优化非易失性存储器(NVM)器件至关重要,该器件在商业上涉及氧化硅-氮化硅-氧化硅(ONO)堆叠结构。然而,利用开尔文探针力显微镜(KPFM)对ONO堆叠结构中电荷陷阱的研究是有限的。在这里,我们使用KPFM研究了ONO器件中的捕获电荷动力学,特别是埋藏的氮化硅层和暴露的氧化硅层中的捕获电子和空穴。此外,在编程过程中,我们观察到暴露氧化物上的捕获空穴扩散和埋藏氮化物内的电子扩散。结果表明,暴露氧化层中空穴的扩散系数为5.20 × 10-13 cm2/s,亚表面氮化层中电子的扩散系数为1.22 × 10-14 cm2/s。因此,我们确定了埋层和表面层中不同的电荷耗散,证明了KPFM表征电荷陷阱材料和改进NVM器件的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoscale Dynamics of Buried Charge Trap in Oxide-Nitride-Oxide Stacks Investigated Using Kelvin Probe Force Microscopy.

Nanoscale Dynamics of Buried Charge Trap in Oxide-Nitride-Oxide Stacks Investigated Using Kelvin Probe Force Microscopy.

Understanding charge trapping and diffusion behavior is crucial for optimizing nonvolatile memory (NVM) devices, which commercially involve a silicon oxide-silicon nitride-silicon oxide (ONO) stack structure. However, studies on charge traps in ONO stack structures using Kelvin probe force microscopy (KPFM) have been limited. Here, we examine trapped charge dynamics in ONO devices using KPFM, especially trapped electrons and holes in the buried silicon nitride layer and on the exposed silicon oxide. Furthermore, we observe diffusion of trapped holes on the exposed oxide and electron diffusion within the buried nitride during the program process. As a result, the diffusion coefficients are quantified as 5.20 × 10-13 cm2/s for holes trapped in the exposed oxide layer and 1.22 × 10-14 cm2/s for electrons trapped in the subsurface nitride layer. Hence, we identify distinct charge dissipation in buried and surface layers, demonstrating the capability of KPFM to characterize charge-trap materials and improve NVM devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信