各向异性含二硫化钼的金纳米金字塔用于等离子体增强电催化、生物传感和能源生产。

IF 6.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Durgadas Datta, Ramakanta Mondal, Ram Chandra Maji, Subin Yu, Dong-Il Won, Dong Ha Kim, Swarup Kumar Maji
{"title":"各向异性含二硫化钼的金纳米金字塔用于等离子体增强电催化、生物传感和能源生产。","authors":"Durgadas Datta, Ramakanta Mondal, Ram Chandra Maji, Subin Yu, Dong-Il Won, Dong Ha Kim, Swarup Kumar Maji","doi":"10.1039/d5nh00491h","DOIUrl":null,"url":null,"abstract":"<p><p>The strategic integration of anisotropic plasmonic nanostructures with two-dimensional (2D) semiconductors presents an emerging route for designing multifunctional hybrid systems with advanced photoelectrochemical (PEC) capabilities. In this work, we report the synthesis of a core-shell nanohybrid, Au nanobipyramid@MoS<sub>2</sub> (AuNBP@MoS<sub>2</sub>), wherein gold nanobipyramids are uniformly encapsulated by few-layer MoS<sub>2</sub> nanosheets. This architecture promotes direct plasmon-semiconductor coupling under 808 nm near-infrared (NIR) excitation, enabling efficient hot electron generation, enhanced interfacial charge separation, and photothermal-assisted transport <i>via</i> localized surface plasmon resonance (LSPR). When immobilized on a glassy carbon electrode (AuNBP@MoS<sub>2</sub>/GC), the hybrid device delivers exceptional PEC performance for both nonenzymatic biosensing and electrocatalysis. The sensor exhibits ultrasensitive detection of H<sub>2</sub>O<sub>2</sub> and glucose with wide linear ranges (10 μM-30 mM and 100 μM-8 mM), low detection limits (7.25 μM and 5.95 μM), and high sensitivities (376.86 and 23.42 μA mM<sup>-1</sup> cm<sup>-2</sup>), accompanied by ∼11-fold photocurrent enhancement under LSPR. It further enables selective HeLa cancer cell detection <i>via</i> biomarker-triggered H<sub>2</sub>O<sub>2</sub> release. In electrocatalysis, the hybrid electrode exhibits outstanding hydrogen evolution reaction (HER) activity, with a low onset potential (-0.18 V <i>vs.</i> RHE), an overpotential of -0.32 V at 10 mA cm<sup>-2</sup>, and a Tafel slope of 92 mV dec<sup>-1</sup> under NIR illumination. Addition of ethanol as a sacrificial agent further reduces the overpotential to -0.316 V and enhances the exchange current density by ∼12-fold due to suppressed charge recombination and improved hot carrier utilization. Mechanistic investigations combining experimental and theoretical analyses attribute these enhancements to synergistic plasmonic effects, efficient hot electron injection, and photothermal contributions. This work underscores the immense potential of anisotropic plasmonic-semiconductor hybrids in driving next-generation technologies for biosensing, electrocatalysis, and sustainable energy applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Au nanobypyramids with molybdenum disulfide for plasmon-enhanced electrocatalysis, biosensing and energy production.\",\"authors\":\"Durgadas Datta, Ramakanta Mondal, Ram Chandra Maji, Subin Yu, Dong-Il Won, Dong Ha Kim, Swarup Kumar Maji\",\"doi\":\"10.1039/d5nh00491h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The strategic integration of anisotropic plasmonic nanostructures with two-dimensional (2D) semiconductors presents an emerging route for designing multifunctional hybrid systems with advanced photoelectrochemical (PEC) capabilities. In this work, we report the synthesis of a core-shell nanohybrid, Au nanobipyramid@MoS<sub>2</sub> (AuNBP@MoS<sub>2</sub>), wherein gold nanobipyramids are uniformly encapsulated by few-layer MoS<sub>2</sub> nanosheets. This architecture promotes direct plasmon-semiconductor coupling under 808 nm near-infrared (NIR) excitation, enabling efficient hot electron generation, enhanced interfacial charge separation, and photothermal-assisted transport <i>via</i> localized surface plasmon resonance (LSPR). When immobilized on a glassy carbon electrode (AuNBP@MoS<sub>2</sub>/GC), the hybrid device delivers exceptional PEC performance for both nonenzymatic biosensing and electrocatalysis. The sensor exhibits ultrasensitive detection of H<sub>2</sub>O<sub>2</sub> and glucose with wide linear ranges (10 μM-30 mM and 100 μM-8 mM), low detection limits (7.25 μM and 5.95 μM), and high sensitivities (376.86 and 23.42 μA mM<sup>-1</sup> cm<sup>-2</sup>), accompanied by ∼11-fold photocurrent enhancement under LSPR. It further enables selective HeLa cancer cell detection <i>via</i> biomarker-triggered H<sub>2</sub>O<sub>2</sub> release. In electrocatalysis, the hybrid electrode exhibits outstanding hydrogen evolution reaction (HER) activity, with a low onset potential (-0.18 V <i>vs.</i> RHE), an overpotential of -0.32 V at 10 mA cm<sup>-2</sup>, and a Tafel slope of 92 mV dec<sup>-1</sup> under NIR illumination. Addition of ethanol as a sacrificial agent further reduces the overpotential to -0.316 V and enhances the exchange current density by ∼12-fold due to suppressed charge recombination and improved hot carrier utilization. Mechanistic investigations combining experimental and theoretical analyses attribute these enhancements to synergistic plasmonic effects, efficient hot electron injection, and photothermal contributions. This work underscores the immense potential of anisotropic plasmonic-semiconductor hybrids in driving next-generation technologies for biosensing, electrocatalysis, and sustainable energy applications.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00491h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00491h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

各向异性等离子体纳米结构与二维(2D)半导体的战略性集成为设计具有先进光电化学(PEC)能力的多功能混合系统提供了一条新的途径。在这项工作中,我们报道了一种核壳纳米杂化物Au nanobipyramid@MoS2 (AuNBP@MoS2)的合成,其中金纳米金字塔被几层MoS2纳米片均匀包裹。该结构促进了808 nm近红外(NIR)激发下等离子体-半导体的直接耦合,实现了高效的热电子生成,增强了界面电荷分离,并通过局部表面等离子体共振(LSPR)实现了光热辅助输运。当固定在玻碳电极(AuNBP@MoS2/GC)上时,混合装置为非酶生物传感和电催化提供了卓越的PEC性能。该传感器对H2O2和葡萄糖的检测灵敏度高,线性范围宽(10 μM-30 mM和100 μM-8 mM),检出限低(7.25 μM和5.95 μM),灵敏度高(376.86和23.42 μA mM-1 cm-2),在LSPR下光电流增强约11倍。它还可以通过生物标志物触发H2O2释放来选择性检测HeLa癌细胞。在电催化方面,该杂化电极表现出出色的析氢反应(HER)活性,起始电位低(相对于RHE为-0.18 V),过电位在10 mA cm-2时为-0.32 V,近红外照明下的塔菲尔斜率为92 mV dec1。添加乙醇作为牺牲剂进一步降低过电位至-0.316 V,由于抑制电荷重组和提高热载子利用率,交换电流密度提高了约12倍。结合实验和理论分析的机制研究将这些增强归因于协同等离子体效应、高效热电子注入和光热贡献。这项工作强调了各向异性等离子体-半导体混合材料在推动下一代生物传感、电催化和可持续能源应用技术方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic Au nanobypyramids with molybdenum disulfide for plasmon-enhanced electrocatalysis, biosensing and energy production.

The strategic integration of anisotropic plasmonic nanostructures with two-dimensional (2D) semiconductors presents an emerging route for designing multifunctional hybrid systems with advanced photoelectrochemical (PEC) capabilities. In this work, we report the synthesis of a core-shell nanohybrid, Au nanobipyramid@MoS2 (AuNBP@MoS2), wherein gold nanobipyramids are uniformly encapsulated by few-layer MoS2 nanosheets. This architecture promotes direct plasmon-semiconductor coupling under 808 nm near-infrared (NIR) excitation, enabling efficient hot electron generation, enhanced interfacial charge separation, and photothermal-assisted transport via localized surface plasmon resonance (LSPR). When immobilized on a glassy carbon electrode (AuNBP@MoS2/GC), the hybrid device delivers exceptional PEC performance for both nonenzymatic biosensing and electrocatalysis. The sensor exhibits ultrasensitive detection of H2O2 and glucose with wide linear ranges (10 μM-30 mM and 100 μM-8 mM), low detection limits (7.25 μM and 5.95 μM), and high sensitivities (376.86 and 23.42 μA mM-1 cm-2), accompanied by ∼11-fold photocurrent enhancement under LSPR. It further enables selective HeLa cancer cell detection via biomarker-triggered H2O2 release. In electrocatalysis, the hybrid electrode exhibits outstanding hydrogen evolution reaction (HER) activity, with a low onset potential (-0.18 V vs. RHE), an overpotential of -0.32 V at 10 mA cm-2, and a Tafel slope of 92 mV dec-1 under NIR illumination. Addition of ethanol as a sacrificial agent further reduces the overpotential to -0.316 V and enhances the exchange current density by ∼12-fold due to suppressed charge recombination and improved hot carrier utilization. Mechanistic investigations combining experimental and theoretical analyses attribute these enhancements to synergistic plasmonic effects, efficient hot electron injection, and photothermal contributions. This work underscores the immense potential of anisotropic plasmonic-semiconductor hybrids in driving next-generation technologies for biosensing, electrocatalysis, and sustainable energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信