机械坚固和高潜热固固相变材料通过氢键协同策略的能量存储和转换。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhiqiang Li, Chunhua Ge, Daming Feng, Xinyue Zhang, Lixue Zhou, Xiangdong Zhang
{"title":"机械坚固和高潜热固固相变材料通过氢键协同策略的能量存储和转换。","authors":"Zhiqiang Li, Chunhua Ge, Daming Feng, Xinyue Zhang, Lixue Zhou, Xiangdong Zhang","doi":"10.1039/d5mh01550b","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-solid phase change materials (SSPCMs) historically struggle to achieve an optimal balance between mechanical robustness and efficient thermal energy storage (TES) capacity. To overcome this limitation, we engineered a hierarchical hydrogen-bond array by integrating quadruple hydrogen-bonded UPy dimers (strong bonds) with urethane linkages (weak bonds). This synergistic network forms a crosslinked structure at room temperature, conferring exceptional mechanical strength (29.3 MPa) to the SSPCMs. Concurrently, the material achieves a high phase change component content (92 wt%) and delivers substantial latent heat (133.7 J g<sup>-1</sup>). This dual-functionality strategy yields comprehensive performance exceeding that of most previously reported SSPCMs. Furthermore, the dynamic hydrogen-bond network imparts multiple advanced functionalities, including excellent recyclability, shape memory, and self-healing capabilities. Critically, the hydrogen-bonding mechanism mitigates the aggregation of hydroxylated multi-walled carbon nanotubes (MWCNTs), ensuring uniform dispersion within the SSPCM matrix. This advancement facilitates practical implementation in photothermal conversion and low-pressure Joule heating applications. Our supramolecular design strategy thus establishes a new paradigm for sustainable energy storage materials that simultaneously possess high mechanical integrity and significant latent heat capacity.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically robust and high latent heat solid-solid phase change materials <i>via</i> a H-bonding collaborative strategy for energy storage and conversion.\",\"authors\":\"Zhiqiang Li, Chunhua Ge, Daming Feng, Xinyue Zhang, Lixue Zhou, Xiangdong Zhang\",\"doi\":\"10.1039/d5mh01550b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solid-solid phase change materials (SSPCMs) historically struggle to achieve an optimal balance between mechanical robustness and efficient thermal energy storage (TES) capacity. To overcome this limitation, we engineered a hierarchical hydrogen-bond array by integrating quadruple hydrogen-bonded UPy dimers (strong bonds) with urethane linkages (weak bonds). This synergistic network forms a crosslinked structure at room temperature, conferring exceptional mechanical strength (29.3 MPa) to the SSPCMs. Concurrently, the material achieves a high phase change component content (92 wt%) and delivers substantial latent heat (133.7 J g<sup>-1</sup>). This dual-functionality strategy yields comprehensive performance exceeding that of most previously reported SSPCMs. Furthermore, the dynamic hydrogen-bond network imparts multiple advanced functionalities, including excellent recyclability, shape memory, and self-healing capabilities. Critically, the hydrogen-bonding mechanism mitigates the aggregation of hydroxylated multi-walled carbon nanotubes (MWCNTs), ensuring uniform dispersion within the SSPCM matrix. This advancement facilitates practical implementation in photothermal conversion and low-pressure Joule heating applications. Our supramolecular design strategy thus establishes a new paradigm for sustainable energy storage materials that simultaneously possess high mechanical integrity and significant latent heat capacity.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01550b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01550b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体-固体相变材料(SSPCMs)一直在努力实现机械稳健性和高效热能储存(TES)能力之间的最佳平衡。为了克服这一限制,我们设计了一个层次化的氢键阵列,将四重氢键UPy二聚体(强键)与聚氨酯键(弱键)集成在一起。这种协同网络在室温下形成交联结构,使sspcm具有优异的机械强度(29.3 MPa)。同时,该材料实现了高相变成分含量(92 wt%),并提供了大量的潜热(133.7焦耳-1)。这种双重功能策略产生的综合性能超过了以前报道的大多数sspcm。此外,动态氢键网络赋予了多种高级功能,包括出色的可回收性、形状记忆和自我修复能力。关键的是,氢键机制减轻了羟基化多壁碳纳米管(MWCNTs)的聚集,确保了SSPCM基质内的均匀分散。这一进步促进了光热转换和低压焦耳加热应用的实际实施。因此,我们的超分子设计策略为同时具有高机械完整性和显著潜热容量的可持续储能材料建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanically robust and high latent heat solid-solid phase change materials via a H-bonding collaborative strategy for energy storage and conversion.

Solid-solid phase change materials (SSPCMs) historically struggle to achieve an optimal balance between mechanical robustness and efficient thermal energy storage (TES) capacity. To overcome this limitation, we engineered a hierarchical hydrogen-bond array by integrating quadruple hydrogen-bonded UPy dimers (strong bonds) with urethane linkages (weak bonds). This synergistic network forms a crosslinked structure at room temperature, conferring exceptional mechanical strength (29.3 MPa) to the SSPCMs. Concurrently, the material achieves a high phase change component content (92 wt%) and delivers substantial latent heat (133.7 J g-1). This dual-functionality strategy yields comprehensive performance exceeding that of most previously reported SSPCMs. Furthermore, the dynamic hydrogen-bond network imparts multiple advanced functionalities, including excellent recyclability, shape memory, and self-healing capabilities. Critically, the hydrogen-bonding mechanism mitigates the aggregation of hydroxylated multi-walled carbon nanotubes (MWCNTs), ensuring uniform dispersion within the SSPCM matrix. This advancement facilitates practical implementation in photothermal conversion and low-pressure Joule heating applications. Our supramolecular design strategy thus establishes a new paradigm for sustainable energy storage materials that simultaneously possess high mechanical integrity and significant latent heat capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信