6-苄基氨基嘌呤在强化含盐废水生物处理中的信号作用:性能和机制。

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Huiwen Yang, Bin Cui, Dandan Zhou
{"title":"6-苄基氨基嘌呤在强化含盐废水生物处理中的信号作用:性能和机制。","authors":"Huiwen Yang, Bin Cui, Dandan Zhou","doi":"10.1016/j.biortech.2025.133455","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduced the phytohormone 6-benzylaminopurine (6-BA) as a novel, economical, and eco-friendly bacterial signal molecule (SM), which overcame the cost and instability limitations of acyl-homoserine lactones (AHLs) in high-salinity wastewater treatment. 6-BA bound to histidine kinases in two-component systems (TCS) through hydrogen bonding, triggering downstream signal transduction and metabolic regulation. Under high-salinity stress, 6-BA promoted cellular integrity and ionic homeostasis, increasing live-cell counts by 113.7%. To mitigate phenol toxicity, 6-BA enhanced extracellular polymeric substance (EPS) functions and antioxidant systems, reducing reactive oxygen species (ROS) by 19.8%. 6-BA upregulated genes related to DNA replication, the TCA cycle, and fatty acid synthesis, thereby repairing membrane integrity. 6-BA also enriched degrading enzymes and improved phenol degradation, leading to approximately 20% increases in COD, TN, and TP removal. Crucially, 6-BA restructured the microbial community, reducing antibiotic resistance gene (ARG) host abundance by 27.9% and ARG-encoding plasmids by 32.8, which curtailed horizontal gene transfer risks. Additionally, 6-BA exhibited no observable ecotoxicity. This work proposed 6-BA signaling as a novel bioaugmentation strategy for enhanced remediation of high-salinity wastewater.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133455"},"PeriodicalIF":9.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signaling role of 6-benzylaminopurine in enhanced biotreatment of saline wastewater: performance and mechanisms.\",\"authors\":\"Huiwen Yang, Bin Cui, Dandan Zhou\",\"doi\":\"10.1016/j.biortech.2025.133455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduced the phytohormone 6-benzylaminopurine (6-BA) as a novel, economical, and eco-friendly bacterial signal molecule (SM), which overcame the cost and instability limitations of acyl-homoserine lactones (AHLs) in high-salinity wastewater treatment. 6-BA bound to histidine kinases in two-component systems (TCS) through hydrogen bonding, triggering downstream signal transduction and metabolic regulation. Under high-salinity stress, 6-BA promoted cellular integrity and ionic homeostasis, increasing live-cell counts by 113.7%. To mitigate phenol toxicity, 6-BA enhanced extracellular polymeric substance (EPS) functions and antioxidant systems, reducing reactive oxygen species (ROS) by 19.8%. 6-BA upregulated genes related to DNA replication, the TCA cycle, and fatty acid synthesis, thereby repairing membrane integrity. 6-BA also enriched degrading enzymes and improved phenol degradation, leading to approximately 20% increases in COD, TN, and TP removal. Crucially, 6-BA restructured the microbial community, reducing antibiotic resistance gene (ARG) host abundance by 27.9% and ARG-encoding plasmids by 32.8, which curtailed horizontal gene transfer risks. Additionally, 6-BA exhibited no observable ecotoxicity. This work proposed 6-BA signaling as a novel bioaugmentation strategy for enhanced remediation of high-salinity wastewater.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"133455\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.133455\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133455","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了植物激素6-苄基氨基嘌呤(6-BA)作为一种新型、经济、环保的细菌信号分子(SM),克服了酰基高丝氨酸内酯(AHLs)在高盐度废水处理中的成本和不稳定性限制。6-BA在双组分系统(two-component systems, TCS)中通过氢键与组氨酸激酶结合,触发下游信号转导和代谢调节。在高盐胁迫下,6-BA促进细胞完整性和离子稳态,使活细胞数量增加113.7%。为了减轻苯酚毒性,6-BA增强了细胞外聚合物(EPS)功能和抗氧化系统,减少了19.8%的活性氧(ROS)。6-BA上调与DNA复制、TCA循环和脂肪酸合成相关的基因,从而修复膜的完整性。6-BA还富集了降解酶,改善了苯酚的降解,使COD、TN和TP的去除率提高了约20%。关键是,6-BA重组了微生物群落,使抗生素耐药基因(ARG)宿主丰度降低27.9%,ARG编码质粒减少32.8%,从而降低了水平基因转移风险。此外,6-BA没有明显的生态毒性。本研究提出6-BA信号作为一种新的生物强化策略用于高盐度废水的强化修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signaling role of 6-benzylaminopurine in enhanced biotreatment of saline wastewater: performance and mechanisms.

This study introduced the phytohormone 6-benzylaminopurine (6-BA) as a novel, economical, and eco-friendly bacterial signal molecule (SM), which overcame the cost and instability limitations of acyl-homoserine lactones (AHLs) in high-salinity wastewater treatment. 6-BA bound to histidine kinases in two-component systems (TCS) through hydrogen bonding, triggering downstream signal transduction and metabolic regulation. Under high-salinity stress, 6-BA promoted cellular integrity and ionic homeostasis, increasing live-cell counts by 113.7%. To mitigate phenol toxicity, 6-BA enhanced extracellular polymeric substance (EPS) functions and antioxidant systems, reducing reactive oxygen species (ROS) by 19.8%. 6-BA upregulated genes related to DNA replication, the TCA cycle, and fatty acid synthesis, thereby repairing membrane integrity. 6-BA also enriched degrading enzymes and improved phenol degradation, leading to approximately 20% increases in COD, TN, and TP removal. Crucially, 6-BA restructured the microbial community, reducing antibiotic resistance gene (ARG) host abundance by 27.9% and ARG-encoding plasmids by 32.8, which curtailed horizontal gene transfer risks. Additionally, 6-BA exhibited no observable ecotoxicity. This work proposed 6-BA signaling as a novel bioaugmentation strategy for enhanced remediation of high-salinity wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信