氟改性双纳米结构氧化石墨烯涂层以保持高热传导

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenjun Zhou, Yuxin Mu, Qiang Yu, Pengfei Li, Jianwen Zhang, Shanlin Wang
{"title":"氟改性双纳米结构氧化石墨烯涂层以保持高热传导","authors":"Wenjun Zhou,&nbsp;Yuxin Mu,&nbsp;Qiang Yu,&nbsp;Pengfei Li,&nbsp;Jianwen Zhang,&nbsp;Shanlin Wang","doi":"10.1007/s10853-025-11554-6","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal interface materials are one of the important ways to solve the heat dissipation of electronic devices. However, the retention of high thermal conductivity in dusty and humid environments remains a significant challenge. In this study, we design a fluorine-modified double-nanostructured GO (named F-GO@SiO<sub>2</sub>) coating that shows excellent self-cleaning, anti-fog, electrical insulation, and thermal conduction. This guarantees that the FR-4 epoxy fiber board coated with F-GO@SiO<sub>2</sub> can maintain durable high thermal conduction up to ~ 0.74 W‧m<sup>−1</sup>‧K<sup>−1</sup> after 5 cycles of the fouling test. In contrast, they severely decline to ~ 0.15 and ~ 0.14 W‧m<sup>−1</sup>‧K<sup>−1</sup> when coated pure GO and fluorine-modified nanoflake-like GO (F-GO). Moreover, the thermally conductive coefficient of the F-GO@SiO<sub>2</sub> coating on copper pipe can also maintain up to ~ 277.3 W‧m<sup>−2</sup>‧K<sup>−1</sup> under a 50% humidity environment after 60 min, that is much higher than ~ 193.8 W‧m<sup>−2</sup>‧K<sup>−1</sup> of the pure GO or F-GO coating. This work provides a novel strategy for designing superhydrophobic thermal interface materials capable of durable heat dissipation.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 40","pages":"18984 - 18998"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorine-modified double-nanostructured GO coatings to perpetuate high thermal conduction\",\"authors\":\"Wenjun Zhou,&nbsp;Yuxin Mu,&nbsp;Qiang Yu,&nbsp;Pengfei Li,&nbsp;Jianwen Zhang,&nbsp;Shanlin Wang\",\"doi\":\"10.1007/s10853-025-11554-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal interface materials are one of the important ways to solve the heat dissipation of electronic devices. However, the retention of high thermal conductivity in dusty and humid environments remains a significant challenge. In this study, we design a fluorine-modified double-nanostructured GO (named F-GO@SiO<sub>2</sub>) coating that shows excellent self-cleaning, anti-fog, electrical insulation, and thermal conduction. This guarantees that the FR-4 epoxy fiber board coated with F-GO@SiO<sub>2</sub> can maintain durable high thermal conduction up to ~ 0.74 W‧m<sup>−1</sup>‧K<sup>−1</sup> after 5 cycles of the fouling test. In contrast, they severely decline to ~ 0.15 and ~ 0.14 W‧m<sup>−1</sup>‧K<sup>−1</sup> when coated pure GO and fluorine-modified nanoflake-like GO (F-GO). Moreover, the thermally conductive coefficient of the F-GO@SiO<sub>2</sub> coating on copper pipe can also maintain up to ~ 277.3 W‧m<sup>−2</sup>‧K<sup>−1</sup> under a 50% humidity environment after 60 min, that is much higher than ~ 193.8 W‧m<sup>−2</sup>‧K<sup>−1</sup> of the pure GO or F-GO coating. This work provides a novel strategy for designing superhydrophobic thermal interface materials capable of durable heat dissipation.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 40\",\"pages\":\"18984 - 18998\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11554-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11554-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热界面材料是解决电子器件散热问题的重要途径之一。然而,在多尘和潮湿的环境中保持高导热性仍然是一个重大挑战。在这项研究中,我们设计了一种氟修饰的双纳米结构氧化石墨烯(命名为F-GO@SiO2)涂层,该涂层具有优异的自清洁、防雾、电绝缘和导热性。这保证了涂有F-GO@SiO2的FR-4环氧纤维板在经过5次循环的结垢试验后,仍能保持高达~ 0.74 W·m−1·K−1的持久高热传导。相比之下,当包覆纯氧化石墨烯和氟修饰纳米片状氧化石墨烯(F-GO)时,它们严重下降到~ 0.15和~ 0.14 W·m−1·K−1。此外,在50%的湿度环境下,铜管上F-GO@SiO2涂层的导热系数在60 min后仍可保持在~ 277.3 W·m−2·K−1,远高于纯GO或F-GO涂层的~ 193.8 W·m−2·K−1。这项工作为设计具有持久散热能力的超疏水热界面材料提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluorine-modified double-nanostructured GO coatings to perpetuate high thermal conduction

Thermal interface materials are one of the important ways to solve the heat dissipation of electronic devices. However, the retention of high thermal conductivity in dusty and humid environments remains a significant challenge. In this study, we design a fluorine-modified double-nanostructured GO (named F-GO@SiO2) coating that shows excellent self-cleaning, anti-fog, electrical insulation, and thermal conduction. This guarantees that the FR-4 epoxy fiber board coated with F-GO@SiO2 can maintain durable high thermal conduction up to ~ 0.74 W‧m−1‧K−1 after 5 cycles of the fouling test. In contrast, they severely decline to ~ 0.15 and ~ 0.14 W‧m−1‧K−1 when coated pure GO and fluorine-modified nanoflake-like GO (F-GO). Moreover, the thermally conductive coefficient of the F-GO@SiO2 coating on copper pipe can also maintain up to ~ 277.3 W‧m−2‧K−1 under a 50% humidity environment after 60 min, that is much higher than ~ 193.8 W‧m−2‧K−1 of the pure GO or F-GO coating. This work provides a novel strategy for designing superhydrophobic thermal interface materials capable of durable heat dissipation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信