Lei Zhang, Alexander Wolszczan, Joshua Pritchard, Ryan S. Lynch, Di Li, Erbil Gügercinoğlu, Pei Wang, Andrew Zic, Yuanming Wang, Pavan A. Uttarkar, Shi Dai
{"title":"五颗孤立白矮星相干射电发射的敏感约束","authors":"Lei Zhang, Alexander Wolszczan, Joshua Pritchard, Ryan S. Lynch, Di Li, Erbil Gügercinoğlu, Pei Wang, Andrew Zic, Yuanming Wang, Pavan A. Uttarkar, Shi Dai","doi":"10.1007/s11433-025-2783-7","DOIUrl":null,"url":null,"abstract":"<div><p>Coherent, periodic radio emission from pulsars has been widely interpreted as evidence of neutron stars as strongly magnetized compact objects. In recent years, radio pulses have also been detected from white dwarfs (WDs) in tight binary systems, raising the question of whether isolated WDs could similarly host pulsar-like emission. We conducted the most sensitive search to date for coherent radio signals from five isolated, rapidly rotating, and magnetized WDs, using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), the Green Bank Telescope (GBT), and the Australia Telescope Compact Array (ATCA). No pulsed or continuum radio emission was detected down to μJy levels. These non-detections place the most stringent observational constraints yet on the existence of isolated WD pulsars. Our results suggest that either such emission is intrinsically weak, narrowly beamed, or requires binary-induced magnetospheric interactions absent in solitary systems. Comparison with the known radio-emitting WDs highlights the critical role of companion interaction in enabling detectable emission. This work expands on prior surveys by targeting sources with the most favorable physical conditions for WD pulsar-like activity and employing highly sensitive, targeted observations. Future observations with next-generation facilities such as the SKA will be essential to explore fainter or sporadic emission from massive, magnetic WDs and to investigate their potential as compact radio transients further.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 12","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive constraints on coherent radio emission from five isolated white dwarfs\",\"authors\":\"Lei Zhang, Alexander Wolszczan, Joshua Pritchard, Ryan S. Lynch, Di Li, Erbil Gügercinoğlu, Pei Wang, Andrew Zic, Yuanming Wang, Pavan A. Uttarkar, Shi Dai\",\"doi\":\"10.1007/s11433-025-2783-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coherent, periodic radio emission from pulsars has been widely interpreted as evidence of neutron stars as strongly magnetized compact objects. In recent years, radio pulses have also been detected from white dwarfs (WDs) in tight binary systems, raising the question of whether isolated WDs could similarly host pulsar-like emission. We conducted the most sensitive search to date for coherent radio signals from five isolated, rapidly rotating, and magnetized WDs, using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), the Green Bank Telescope (GBT), and the Australia Telescope Compact Array (ATCA). No pulsed or continuum radio emission was detected down to μJy levels. These non-detections place the most stringent observational constraints yet on the existence of isolated WD pulsars. Our results suggest that either such emission is intrinsically weak, narrowly beamed, or requires binary-induced magnetospheric interactions absent in solitary systems. Comparison with the known radio-emitting WDs highlights the critical role of companion interaction in enabling detectable emission. This work expands on prior surveys by targeting sources with the most favorable physical conditions for WD pulsar-like activity and employing highly sensitive, targeted observations. Future observations with next-generation facilities such as the SKA will be essential to explore fainter or sporadic emission from massive, magnetic WDs and to investigate their potential as compact radio transients further.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 12\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2783-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2783-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Sensitive constraints on coherent radio emission from five isolated white dwarfs
Coherent, periodic radio emission from pulsars has been widely interpreted as evidence of neutron stars as strongly magnetized compact objects. In recent years, radio pulses have also been detected from white dwarfs (WDs) in tight binary systems, raising the question of whether isolated WDs could similarly host pulsar-like emission. We conducted the most sensitive search to date for coherent radio signals from five isolated, rapidly rotating, and magnetized WDs, using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), the Green Bank Telescope (GBT), and the Australia Telescope Compact Array (ATCA). No pulsed or continuum radio emission was detected down to μJy levels. These non-detections place the most stringent observational constraints yet on the existence of isolated WD pulsars. Our results suggest that either such emission is intrinsically weak, narrowly beamed, or requires binary-induced magnetospheric interactions absent in solitary systems. Comparison with the known radio-emitting WDs highlights the critical role of companion interaction in enabling detectable emission. This work expands on prior surveys by targeting sources with the most favorable physical conditions for WD pulsar-like activity and employing highly sensitive, targeted observations. Future observations with next-generation facilities such as the SKA will be essential to explore fainter or sporadic emission from massive, magnetic WDs and to investigate their potential as compact radio transients further.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.