CeO2掺杂在钠钙硅酸盐玻璃中的作用:结构和热性能

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Karolina Milewska, Sharafat Ali, Peter Sundberg, Stefania Wolff, Zaeem Ur Rehman, Mohsin Ali Raza, Muhammad Huzaifa Tariq, Natalia Anna Wójcik
{"title":"CeO2掺杂在钠钙硅酸盐玻璃中的作用:结构和热性能","authors":"Karolina Milewska,&nbsp;Sharafat Ali,&nbsp;Peter Sundberg,&nbsp;Stefania Wolff,&nbsp;Zaeem Ur Rehman,&nbsp;Mohsin Ali Raza,&nbsp;Muhammad Huzaifa Tariq,&nbsp;Natalia Anna Wójcik","doi":"10.1007/s10853-025-11568-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the structural and thermal properties of cerium-doped soda–lime glasses. A series of glasses with varying CeO<sub>2</sub> concentrations (0.6–15 wt.%) were synthesized via the melt-quenching technique in alumina crucibles, yielding homogeneous, amorphous materials characterized by SEM, EDX, XRD, FTIR, Raman spectroscopy, and differential thermal analysis (DTA). Potentiometric titration confirmed the presence of tetravalent cerium (Ce<sup>4+</sup>) and trivalent cerium (Ce<sup>3+</sup>) as the dominant oxidation state. Structural studies revealed Ce-induced silicate network depolymerization, evidenced by shifts in Qⁿ unit distribution (Q<sup>4</sup> → Q<sup>3</sup>/Q<sup>2</sup>) in FTIR/Raman spectra and increasing O:Si ratios. Despite this depolymerization, the effective cationic field strength (ECFS) rose with both Ce<sup>3+</sup> and Ce<sup>4+</sup> incorporation, driven by their high bond strengths, counteracting network fragmentation. Consequently, the glass transition temperature (T<sub>g</sub>) increased monotonically with Ce<sup>4+</sup> content (611 °C to 634 °C), while thermal stability (S) decreased due to enhanced crystallization tendencies. Aluminum oxide diffusion from crucibles (1–3 at%) further complicated compositional trends, influencing ECFS and crystallization kinetics. Optical basicity (Λ≈0.58) remained invariant, underscoring its insensitivity to localized Ce<sup>4+</sup> structural changes. These findings highlight valuable insights into the structural role of cerium in soda–lime glasses and its potential for optimizing glass properties for advanced technological applications.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 40","pages":"18774 - 18788"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-025-11568-0.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of CeO2 doping in soda–lime silicate glass: structural and thermal properties\",\"authors\":\"Karolina Milewska,&nbsp;Sharafat Ali,&nbsp;Peter Sundberg,&nbsp;Stefania Wolff,&nbsp;Zaeem Ur Rehman,&nbsp;Mohsin Ali Raza,&nbsp;Muhammad Huzaifa Tariq,&nbsp;Natalia Anna Wójcik\",\"doi\":\"10.1007/s10853-025-11568-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the structural and thermal properties of cerium-doped soda–lime glasses. A series of glasses with varying CeO<sub>2</sub> concentrations (0.6–15 wt.%) were synthesized via the melt-quenching technique in alumina crucibles, yielding homogeneous, amorphous materials characterized by SEM, EDX, XRD, FTIR, Raman spectroscopy, and differential thermal analysis (DTA). Potentiometric titration confirmed the presence of tetravalent cerium (Ce<sup>4+</sup>) and trivalent cerium (Ce<sup>3+</sup>) as the dominant oxidation state. Structural studies revealed Ce-induced silicate network depolymerization, evidenced by shifts in Qⁿ unit distribution (Q<sup>4</sup> → Q<sup>3</sup>/Q<sup>2</sup>) in FTIR/Raman spectra and increasing O:Si ratios. Despite this depolymerization, the effective cationic field strength (ECFS) rose with both Ce<sup>3+</sup> and Ce<sup>4+</sup> incorporation, driven by their high bond strengths, counteracting network fragmentation. Consequently, the glass transition temperature (T<sub>g</sub>) increased monotonically with Ce<sup>4+</sup> content (611 °C to 634 °C), while thermal stability (S) decreased due to enhanced crystallization tendencies. Aluminum oxide diffusion from crucibles (1–3 at%) further complicated compositional trends, influencing ECFS and crystallization kinetics. Optical basicity (Λ≈0.58) remained invariant, underscoring its insensitivity to localized Ce<sup>4+</sup> structural changes. These findings highlight valuable insights into the structural role of cerium in soda–lime glasses and its potential for optimizing glass properties for advanced technological applications.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 40\",\"pages\":\"18774 - 18788\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10853-025-11568-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11568-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11568-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了掺铈钠石灰玻璃的结构和热性能。采用熔融淬火技术在氧化铝坩埚中合成了一系列CeO2浓度(0.6-15 wt.%)不同的玻璃,得到了均匀的非晶材料,通过SEM, EDX, XRD, FTIR,拉曼光谱和差热分析(DTA)进行了表征。电位滴定法证实了四价铈(Ce4+)和三价铈(Ce3+)是主要氧化态。结构研究揭示了ce诱导的硅酸盐网络解聚,其表现为FTIR/Raman光谱中Q - n单元分布(Q4→Q3/Q2)的变化和O:Si比值的增加。尽管发生了解聚,但Ce3+和Ce4+的有效阳离子场强(ECFS)都随着Ce3+和Ce4+的掺入而增加,这是由于它们的高键强度,抵消了网络破碎。结果表明,随着Ce4+含量的增加,玻璃化转变温度(Tg)单调升高(611 ~ 634℃),热稳定性(S)下降,晶化倾向增强。坩埚中的氧化铝扩散(1-3 at%)进一步使组分趋势复杂化,影响了ECFS和结晶动力学。光学碱度(Λ≈0.58)保持不变,表明其对局部Ce4+结构变化不敏感。这些发现突出了铈在钠钙玻璃中的结构作用及其在优化先进技术应用的玻璃性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of CeO2 doping in soda–lime silicate glass: structural and thermal properties

This study investigates the structural and thermal properties of cerium-doped soda–lime glasses. A series of glasses with varying CeO2 concentrations (0.6–15 wt.%) were synthesized via the melt-quenching technique in alumina crucibles, yielding homogeneous, amorphous materials characterized by SEM, EDX, XRD, FTIR, Raman spectroscopy, and differential thermal analysis (DTA). Potentiometric titration confirmed the presence of tetravalent cerium (Ce4+) and trivalent cerium (Ce3+) as the dominant oxidation state. Structural studies revealed Ce-induced silicate network depolymerization, evidenced by shifts in Qⁿ unit distribution (Q4 → Q3/Q2) in FTIR/Raman spectra and increasing O:Si ratios. Despite this depolymerization, the effective cationic field strength (ECFS) rose with both Ce3+ and Ce4+ incorporation, driven by their high bond strengths, counteracting network fragmentation. Consequently, the glass transition temperature (Tg) increased monotonically with Ce4+ content (611 °C to 634 °C), while thermal stability (S) decreased due to enhanced crystallization tendencies. Aluminum oxide diffusion from crucibles (1–3 at%) further complicated compositional trends, influencing ECFS and crystallization kinetics. Optical basicity (Λ≈0.58) remained invariant, underscoring its insensitivity to localized Ce4+ structural changes. These findings highlight valuable insights into the structural role of cerium in soda–lime glasses and its potential for optimizing glass properties for advanced technological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信