非热等离子体介导的亚胺培南耐药肺炎克雷伯菌形成的生物膜失活:一种非抗生素方法

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Mohammed F. Al-Marjani, Raghad S. Mohammed, Nodira Azimova, Jamoliddin Razzokov, Sanaa Ali Hamza
{"title":"非热等离子体介导的亚胺培南耐药肺炎克雷伯菌形成的生物膜失活:一种非抗生素方法","authors":"Mohammed F. Al-Marjani,&nbsp;Raghad S. Mohammed,&nbsp;Nodira Azimova,&nbsp;Jamoliddin Razzokov,&nbsp;Sanaa Ali Hamza","doi":"10.1140/epjp/s13360-025-06933-6","DOIUrl":null,"url":null,"abstract":"<div><p>Bacteria often form complex communities known as biofilms—hydrated extracellular polymeric matrices that protect sessile cells. Non-thermal plasma (NTP) is emerging as a potential strategy for biofilm disruption due to the oxidative damage caused by reactive oxygen and nitrogen species (RONS). In this study, the antimicrobial activity of an argon-based atmospheric pressure NTP jet was evaluated against imipenem-resistant <i>Klebsiella pneumoniae</i> biofilms in vitro. Plasma exposure times ranged from 0 to 120 s. A 15-s treatment reduced bacterial growth by 72% (<i>p</i> &lt; 0.0001), with complete inhibition observed reach 100% at 60–120 s. Biofilm degradation reached 42% at 15 s and 100% at 60 s. Scanning electron microscopy revealed significant morphological damage, including cell deformation and shrinkage. These findings highlight NTP’s potential as an effective, non-antibiotic method for combating multidrug-resistant <i>K. pneumoniae</i> infections.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-thermal plasma-mediated inactivation of biofilms formed by imipenem-resistant Klebsiella pneumoniae: a non-antibiotic approach\",\"authors\":\"Mohammed F. Al-Marjani,&nbsp;Raghad S. Mohammed,&nbsp;Nodira Azimova,&nbsp;Jamoliddin Razzokov,&nbsp;Sanaa Ali Hamza\",\"doi\":\"10.1140/epjp/s13360-025-06933-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacteria often form complex communities known as biofilms—hydrated extracellular polymeric matrices that protect sessile cells. Non-thermal plasma (NTP) is emerging as a potential strategy for biofilm disruption due to the oxidative damage caused by reactive oxygen and nitrogen species (RONS). In this study, the antimicrobial activity of an argon-based atmospheric pressure NTP jet was evaluated against imipenem-resistant <i>Klebsiella pneumoniae</i> biofilms in vitro. Plasma exposure times ranged from 0 to 120 s. A 15-s treatment reduced bacterial growth by 72% (<i>p</i> &lt; 0.0001), with complete inhibition observed reach 100% at 60–120 s. Biofilm degradation reached 42% at 15 s and 100% at 60 s. Scanning electron microscopy revealed significant morphological damage, including cell deformation and shrinkage. These findings highlight NTP’s potential as an effective, non-antibiotic method for combating multidrug-resistant <i>K. pneumoniae</i> infections.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06933-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06933-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细菌经常形成复杂的群落,被称为生物膜-水合的细胞外聚合物基质,保护无根细胞。由于活性氧和活性氮(RONS)引起的氧化损伤,非热等离子体(NTP)正成为生物膜破坏的潜在策略。在本研究中,研究了氩基常压NTP射流对亚胺培南耐药肺炎克雷伯菌生物膜的体外抗菌活性。等离子体暴露时间从0到120秒不等。15-s处理可使细菌生长减少72% (p < 0.0001), 60-120 s完全抑制达到100%。15 s生物膜降解率为42%,60 s生物膜降解率为100%。扫描电镜显示明显的形态学损伤,包括细胞变形和收缩。这些发现突出了国家结核控制项目作为对抗多药耐药肺炎克雷伯菌感染的有效、非抗生素方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-thermal plasma-mediated inactivation of biofilms formed by imipenem-resistant Klebsiella pneumoniae: a non-antibiotic approach

Bacteria often form complex communities known as biofilms—hydrated extracellular polymeric matrices that protect sessile cells. Non-thermal plasma (NTP) is emerging as a potential strategy for biofilm disruption due to the oxidative damage caused by reactive oxygen and nitrogen species (RONS). In this study, the antimicrobial activity of an argon-based atmospheric pressure NTP jet was evaluated against imipenem-resistant Klebsiella pneumoniae biofilms in vitro. Plasma exposure times ranged from 0 to 120 s. A 15-s treatment reduced bacterial growth by 72% (p < 0.0001), with complete inhibition observed reach 100% at 60–120 s. Biofilm degradation reached 42% at 15 s and 100% at 60 s. Scanning electron microscopy revealed significant morphological damage, including cell deformation and shrinkage. These findings highlight NTP’s potential as an effective, non-antibiotic method for combating multidrug-resistant K. pneumoniae infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信