Daniel Rapachi, Ieda P. Rapachi, Caroline P. Roldão, Cecília A. Silveira, Vanessa B. Mortola, Wladimir H. Flores, Jackson D. Scholten, Marcos A. Gelesky
{"title":"改性咪唑沸石骨架钯/氧化锌催化剂催化CO2加氢合成甲酸的研究","authors":"Daniel Rapachi, Ieda P. Rapachi, Caroline P. Roldão, Cecília A. Silveira, Vanessa B. Mortola, Wladimir H. Flores, Jackson D. Scholten, Marcos A. Gelesky","doi":"10.1007/s10876-025-02918-8","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> hydrogenation to formic acid is a promising strategy for CO<sub>2</sub> mitigation, but requires high temperatures, pressure, additives and catalysts. This study reports the synthesis of Pd/ZnO obtained through the calcination of a palladium-modified zeolitic imidazolate framework (ZIF-8), applied in the CO<sub>2</sub> hydrogenation to formate, under mild reaction conditions. The crystal structure, crystallite size, microstrain, and morphological properties were characterized using XRD and TEM. Crystallite size and microstrain were evaluated by Scherrer and Williamson-Hall methods. The Pd/ZnO catalyst exhibited a hexagonal wurtzite ZnO structure and Pd in the face-centered cubic (fcc) phase, with small crystallite size and few imperfections in ZnO. The catalytic activity was evaluated for CO<sub>2</sub> hydrogenation in the aqueous phase, yielding 52.42 µmol of formate. The results suggest that Pd species are responsible for H<sub>2</sub> activation, while ZnO facilitates CO<sub>2</sub> activation. The ZIF-derived Pd/ZnO material demonstrates potential as catalyst for CO<sub>2</sub> conversion, contributing to environmental mitigation and development of carbon-neutral chemical processes.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Synthesis of Formic Acid from CO2 Hydrogenation Using Pd/ZnO Catalysts Derived from a Modified Zeolitic Imidazolate Framework\",\"authors\":\"Daniel Rapachi, Ieda P. Rapachi, Caroline P. Roldão, Cecília A. Silveira, Vanessa B. Mortola, Wladimir H. Flores, Jackson D. Scholten, Marcos A. Gelesky\",\"doi\":\"10.1007/s10876-025-02918-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CO<sub>2</sub> hydrogenation to formic acid is a promising strategy for CO<sub>2</sub> mitigation, but requires high temperatures, pressure, additives and catalysts. This study reports the synthesis of Pd/ZnO obtained through the calcination of a palladium-modified zeolitic imidazolate framework (ZIF-8), applied in the CO<sub>2</sub> hydrogenation to formate, under mild reaction conditions. The crystal structure, crystallite size, microstrain, and morphological properties were characterized using XRD and TEM. Crystallite size and microstrain were evaluated by Scherrer and Williamson-Hall methods. The Pd/ZnO catalyst exhibited a hexagonal wurtzite ZnO structure and Pd in the face-centered cubic (fcc) phase, with small crystallite size and few imperfections in ZnO. The catalytic activity was evaluated for CO<sub>2</sub> hydrogenation in the aqueous phase, yielding 52.42 µmol of formate. The results suggest that Pd species are responsible for H<sub>2</sub> activation, while ZnO facilitates CO<sub>2</sub> activation. The ZIF-derived Pd/ZnO material demonstrates potential as catalyst for CO<sub>2</sub> conversion, contributing to environmental mitigation and development of carbon-neutral chemical processes.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02918-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02918-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Sustainable Synthesis of Formic Acid from CO2 Hydrogenation Using Pd/ZnO Catalysts Derived from a Modified Zeolitic Imidazolate Framework
CO2 hydrogenation to formic acid is a promising strategy for CO2 mitigation, but requires high temperatures, pressure, additives and catalysts. This study reports the synthesis of Pd/ZnO obtained through the calcination of a palladium-modified zeolitic imidazolate framework (ZIF-8), applied in the CO2 hydrogenation to formate, under mild reaction conditions. The crystal structure, crystallite size, microstrain, and morphological properties were characterized using XRD and TEM. Crystallite size and microstrain were evaluated by Scherrer and Williamson-Hall methods. The Pd/ZnO catalyst exhibited a hexagonal wurtzite ZnO structure and Pd in the face-centered cubic (fcc) phase, with small crystallite size and few imperfections in ZnO. The catalytic activity was evaluated for CO2 hydrogenation in the aqueous phase, yielding 52.42 µmol of formate. The results suggest that Pd species are responsible for H2 activation, while ZnO facilitates CO2 activation. The ZIF-derived Pd/ZnO material demonstrates potential as catalyst for CO2 conversion, contributing to environmental mitigation and development of carbon-neutral chemical processes.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.