{"title":"一种改进的爬行动物搜索算法在正交镜像滤波器组设计中的探索利用机制及其FPGA实现","authors":"Raina Modak Aich, Supriya Dhabal, Palaniandavar Venkateswaran","doi":"10.1007/s10470-025-02495-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an enhanced version of the Reptile Search Algorithm (RSA) based on the Differential Evolution (DE). In the proposed RSADE algorithm, the exploration and exploitation phases of RSA are enriched by the DE mutation phase. This is done to avoid trapping solutions into both global and local minima. The proposed algorithm is used to design a Near-Perfect Reconstruction (NPR) Quadrature Mirror Filter (QMF) bank. A minimized closed-form objective function is constructed by combining the values of pass-band ripple, amplitude distortion, transition-band error, and stop-band error. Initially, a test on standard IEEE CEC 2014 benchmark functions is performed, where the RSADE algorithm obtains rank 1. Compared to the current cutting-edge algorithms, the proposed algorithm exhibits a 26.79% increase in stop-band attenuation, 90.90%, 80.39%, 75.59%, 75.85%, and 67.10% decrease in transition-band error, stop-band error, pass-band error, overall amplitude distortion, and peak reconstruction error, respectively. Further, the proposed design is simulated with the Xilinx ISE Design Suite and executed on three Field Programmable Gate Array (FPGA) platforms using Spartan 6, Virtex 5, and Kintex 7 for filter tap 32. For instance, the average improvements in Spartan 6 compared to some recent algorithms are 4.75%, 6.78%, 5.07%, and 0.06% in the number of slice LUTs, occupied slices, fully used LUT-FF pairs, and total power consumption, respectively. The experimental outcomes of the proposed algorithm show its improvement in solving complex multimodal problems compared to the existing state-of-the-art algorithms.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"125 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved exploration–exploitation mechanism of reptile search algorithm for quadrature mirror filter bank design and its FPGA implementation\",\"authors\":\"Raina Modak Aich, Supriya Dhabal, Palaniandavar Venkateswaran\",\"doi\":\"10.1007/s10470-025-02495-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an enhanced version of the Reptile Search Algorithm (RSA) based on the Differential Evolution (DE). In the proposed RSADE algorithm, the exploration and exploitation phases of RSA are enriched by the DE mutation phase. This is done to avoid trapping solutions into both global and local minima. The proposed algorithm is used to design a Near-Perfect Reconstruction (NPR) Quadrature Mirror Filter (QMF) bank. A minimized closed-form objective function is constructed by combining the values of pass-band ripple, amplitude distortion, transition-band error, and stop-band error. Initially, a test on standard IEEE CEC 2014 benchmark functions is performed, where the RSADE algorithm obtains rank 1. Compared to the current cutting-edge algorithms, the proposed algorithm exhibits a 26.79% increase in stop-band attenuation, 90.90%, 80.39%, 75.59%, 75.85%, and 67.10% decrease in transition-band error, stop-band error, pass-band error, overall amplitude distortion, and peak reconstruction error, respectively. Further, the proposed design is simulated with the Xilinx ISE Design Suite and executed on three Field Programmable Gate Array (FPGA) platforms using Spartan 6, Virtex 5, and Kintex 7 for filter tap 32. For instance, the average improvements in Spartan 6 compared to some recent algorithms are 4.75%, 6.78%, 5.07%, and 0.06% in the number of slice LUTs, occupied slices, fully used LUT-FF pairs, and total power consumption, respectively. The experimental outcomes of the proposed algorithm show its improvement in solving complex multimodal problems compared to the existing state-of-the-art algorithms.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"125 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02495-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02495-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种基于差分进化的爬虫类搜索算法(RSA)的改进版本。在本文提出的RSADE算法中,RSA的探索和利用阶段被DE突变阶段所丰富。这样做是为了避免将解同时困在全局最小值和局部最小值中。利用该算法设计了一个近完美重构正交镜滤波器组。结合通带纹波、幅度失真、过渡带误差和阻带误差的值,构造了最小化的闭目标函数。首先,对标准IEEE CEC 2014基准函数进行测试,其中RSADE算法获得排名1。与现有的前沿算法相比,该算法的阻带衰减提高了26.79%,过渡带误差、阻带误差、通带误差、总幅度失真和峰值重建误差分别降低了90.90%、80.39%、75.59%、75.85%和67.10%。此外,采用Xilinx ISE design Suite对所提出的设计进行了仿真,并在三个现场可编程门阵列(FPGA)平台上执行,使用Spartan 6、Virtex 5和Kintex 7作为滤波器分接32。例如,与最近的一些算法相比,Spartan 6在切片lut数量、占用的切片、充分使用的LUT-FF对和总功耗方面的平均改进分别为4.75%、6.78%、5.07%和0.06%。实验结果表明,与现有的先进算法相比,该算法在解决复杂多模态问题方面有了很大的改进。
An improved exploration–exploitation mechanism of reptile search algorithm for quadrature mirror filter bank design and its FPGA implementation
This paper presents an enhanced version of the Reptile Search Algorithm (RSA) based on the Differential Evolution (DE). In the proposed RSADE algorithm, the exploration and exploitation phases of RSA are enriched by the DE mutation phase. This is done to avoid trapping solutions into both global and local minima. The proposed algorithm is used to design a Near-Perfect Reconstruction (NPR) Quadrature Mirror Filter (QMF) bank. A minimized closed-form objective function is constructed by combining the values of pass-band ripple, amplitude distortion, transition-band error, and stop-band error. Initially, a test on standard IEEE CEC 2014 benchmark functions is performed, where the RSADE algorithm obtains rank 1. Compared to the current cutting-edge algorithms, the proposed algorithm exhibits a 26.79% increase in stop-band attenuation, 90.90%, 80.39%, 75.59%, 75.85%, and 67.10% decrease in transition-band error, stop-band error, pass-band error, overall amplitude distortion, and peak reconstruction error, respectively. Further, the proposed design is simulated with the Xilinx ISE Design Suite and executed on three Field Programmable Gate Array (FPGA) platforms using Spartan 6, Virtex 5, and Kintex 7 for filter tap 32. For instance, the average improvements in Spartan 6 compared to some recent algorithms are 4.75%, 6.78%, 5.07%, and 0.06% in the number of slice LUTs, occupied slices, fully used LUT-FF pairs, and total power consumption, respectively. The experimental outcomes of the proposed algorithm show its improvement in solving complex multimodal problems compared to the existing state-of-the-art algorithms.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.