Andreev和Majorana束缚态下的异常邻近效应

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Eslam Ahmed, Yukio Tanaka, Jorge Cayao
{"title":"Andreev和Majorana束缚态下的异常邻近效应","authors":"Eslam Ahmed,&nbsp;Yukio Tanaka,&nbsp;Jorge Cayao","doi":"10.1007/s10948-025-07057-9","DOIUrl":null,"url":null,"abstract":"<div><p>We theoretically study the anomalous proximity effect in a clean normal metal/disordered normal metal/superconductor junction based on a Rashba semiconductor nanowire model. The system hosts two distinct phases: a trivial helical phase with zero-energy Andreev bound states and a topological phase with Majorana bound states. We analyze the local density of states and induced pair correlations at the edge of the normal metal region. We investigate their behavior under scalar onsite disorder and changing the superconductor and disordered region lengths in the trivial helical and topological phases. We find that both phases exhibit a zero-energy peak in the local density of states and spin-triplet pair correlations in the clean limit, which we attribute primarily to odd-frequency spin-triplet pairs. Disorder rapidly splits the zero-energy peak in the trivial helical phase regardless of the lengths of the superconductor and disordered normal regions. The zero-energy peak in the topological phase shows similar fragility when the superconductor region is short. However, for long superconductor regions, the zero-energy peak in the topological phase remains robust against disorder. In contrast, spin-singlet correlations are suppressed near zero energy in both phases. Our results highlight that the robustness of the zero-energy peak against scalar disorder, contingent on the superconductor region length, serves as a key indicator distinguishing trivial Andreev bound states from topological Majorana bound states.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10948-025-07057-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Anomalous Proximity Effect Under Andreev and Majorana Bound States\",\"authors\":\"Eslam Ahmed,&nbsp;Yukio Tanaka,&nbsp;Jorge Cayao\",\"doi\":\"10.1007/s10948-025-07057-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We theoretically study the anomalous proximity effect in a clean normal metal/disordered normal metal/superconductor junction based on a Rashba semiconductor nanowire model. The system hosts two distinct phases: a trivial helical phase with zero-energy Andreev bound states and a topological phase with Majorana bound states. We analyze the local density of states and induced pair correlations at the edge of the normal metal region. We investigate their behavior under scalar onsite disorder and changing the superconductor and disordered region lengths in the trivial helical and topological phases. We find that both phases exhibit a zero-energy peak in the local density of states and spin-triplet pair correlations in the clean limit, which we attribute primarily to odd-frequency spin-triplet pairs. Disorder rapidly splits the zero-energy peak in the trivial helical phase regardless of the lengths of the superconductor and disordered normal regions. The zero-energy peak in the topological phase shows similar fragility when the superconductor region is short. However, for long superconductor regions, the zero-energy peak in the topological phase remains robust against disorder. In contrast, spin-singlet correlations are suppressed near zero energy in both phases. Our results highlight that the robustness of the zero-energy peak against scalar disorder, contingent on the superconductor region length, serves as a key indicator distinguishing trivial Andreev bound states from topological Majorana bound states.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 5\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10948-025-07057-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-025-07057-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-07057-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于Rashba半导体纳米线模型,从理论上研究了干净的正常金属/无序的正常金属/超导体结中的异常接近效应。该系统具有两个不同的相:一个具有零能量Andreev束缚态的平凡螺旋相和一个具有Majorana束缚态的拓扑相。我们分析了正常金属区域边缘的局部态密度和诱导对相关。我们研究了它们在标量场无序下的行为,以及在平凡的螺旋相和拓扑相中改变超导体和无序区长度。我们发现这两个相在局域态密度和净极限下的自旋-三重态对相关中都表现出零能量峰值,我们将其主要归因于奇频自旋-三重态对。无论超导体和无序正常区域的长度如何,无序都能在平凡的螺旋相中迅速分裂零能峰。当超导体区域较短时,拓扑相中的零能峰也表现出类似的脆弱性。然而,对于长超导体区域,拓扑相中的零能量峰对无序仍然是稳健的。相反,自旋-单重态相关在两个相中都被抑制在接近零能量。我们的研究结果强调了零能量峰对标量无序的鲁棒性,这取决于超导体区域的长度,这是区分平凡Andreev束缚态和拓扑Majorana束缚态的关键指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomalous Proximity Effect Under Andreev and Majorana Bound States

We theoretically study the anomalous proximity effect in a clean normal metal/disordered normal metal/superconductor junction based on a Rashba semiconductor nanowire model. The system hosts two distinct phases: a trivial helical phase with zero-energy Andreev bound states and a topological phase with Majorana bound states. We analyze the local density of states and induced pair correlations at the edge of the normal metal region. We investigate their behavior under scalar onsite disorder and changing the superconductor and disordered region lengths in the trivial helical and topological phases. We find that both phases exhibit a zero-energy peak in the local density of states and spin-triplet pair correlations in the clean limit, which we attribute primarily to odd-frequency spin-triplet pairs. Disorder rapidly splits the zero-energy peak in the trivial helical phase regardless of the lengths of the superconductor and disordered normal regions. The zero-energy peak in the topological phase shows similar fragility when the superconductor region is short. However, for long superconductor regions, the zero-energy peak in the topological phase remains robust against disorder. In contrast, spin-singlet correlations are suppressed near zero energy in both phases. Our results highlight that the robustness of the zero-energy peak against scalar disorder, contingent on the superconductor region length, serves as a key indicator distinguishing trivial Andreev bound states from topological Majorana bound states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信