在杂乱环境中抓取目标物体的自主机器人操作

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sanraj Lachhiramka,  Pradeep J, Archanaa A. Chandaragi, Arjun Achar, Shikha Tripathi
{"title":"在杂乱环境中抓取目标物体的自主机器人操作","authors":"Sanraj Lachhiramka,&nbsp; Pradeep J,&nbsp;Archanaa A. Chandaragi,&nbsp;Arjun Achar,&nbsp;Shikha Tripathi","doi":"10.1007/s10514-025-10214-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work addresses the challenge of grasping a target object in cluttered environments, even when it is partially visible or fully occluded. The proposed approach enables the manipulator to learn a sequence of strategic pushing actions that rearrange the scene to make the target object graspable. Our pipeline integrates image morphological processing with deep reinforcement learning (DRL), using GR-ConvNet to predict grasp points for the target. When the object is considered ungraspable, a soft actor-critic (SAC) model guides optimal pushing actions. A novel clutter map is introduced, encoding environmental clutter into a quantitative score that informs the decision-making process. The system shows improved performance with a discount factor (<span>\\(\\gamma \\)</span>) of 0.9, demonstrated through comparative analysis with and without the clutter map. We also compare models trained in discrete versus continuous action spaces to evaluate the impact of action space on DRL effectiveness. The pipeline generalizes well to diverse objects and integrates directly with hardware, requiring no additional training for real-world deployment.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"49 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous robotic manipulation for grasping a target object in cluttered environments\",\"authors\":\"Sanraj Lachhiramka,&nbsp; Pradeep J,&nbsp;Archanaa A. Chandaragi,&nbsp;Arjun Achar,&nbsp;Shikha Tripathi\",\"doi\":\"10.1007/s10514-025-10214-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work addresses the challenge of grasping a target object in cluttered environments, even when it is partially visible or fully occluded. The proposed approach enables the manipulator to learn a sequence of strategic pushing actions that rearrange the scene to make the target object graspable. Our pipeline integrates image morphological processing with deep reinforcement learning (DRL), using GR-ConvNet to predict grasp points for the target. When the object is considered ungraspable, a soft actor-critic (SAC) model guides optimal pushing actions. A novel clutter map is introduced, encoding environmental clutter into a quantitative score that informs the decision-making process. The system shows improved performance with a discount factor (<span>\\\\(\\\\gamma \\\\)</span>) of 0.9, demonstrated through comparative analysis with and without the clutter map. We also compare models trained in discrete versus continuous action spaces to evaluate the impact of action space on DRL effectiveness. The pipeline generalizes well to diverse objects and integrates directly with hardware, requiring no additional training for real-world deployment.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"49 4\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-025-10214-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-025-10214-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作解决了在混乱的环境中抓取目标物体的挑战,即使它部分可见或完全被遮挡。所提出的方法使机械手能够学习一系列策略性的推动动作,重新排列场景,使目标物体可抓取。我们的管道将图像形态学处理与深度强化学习(DRL)相结合,使用GR-ConvNet来预测目标的抓取点。当物体被认为是不可抓取时,软行为者批评(SAC)模型指导最佳的推动作。引入了一种新的杂波图,将环境杂波编码为定量评分,为决策过程提供信息。通过对杂波图和无杂波图的对比分析,该系统的折现系数(\(\gamma \))为0.9。我们还比较了在离散和连续动作空间中训练的模型,以评估动作空间对DRL有效性的影响。该管道可以很好地推广到不同的对象,并直接与硬件集成,无需额外的培训即可进行实际部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autonomous robotic manipulation for grasping a target object in cluttered environments

Autonomous robotic manipulation for grasping a target object in cluttered environments

This work addresses the challenge of grasping a target object in cluttered environments, even when it is partially visible or fully occluded. The proposed approach enables the manipulator to learn a sequence of strategic pushing actions that rearrange the scene to make the target object graspable. Our pipeline integrates image morphological processing with deep reinforcement learning (DRL), using GR-ConvNet to predict grasp points for the target. When the object is considered ungraspable, a soft actor-critic (SAC) model guides optimal pushing actions. A novel clutter map is introduced, encoding environmental clutter into a quantitative score that informs the decision-making process. The system shows improved performance with a discount factor (\(\gamma \)) of 0.9, demonstrated through comparative analysis with and without the clutter map. We also compare models trained in discrete versus continuous action spaces to evaluate the impact of action space on DRL effectiveness. The pipeline generalizes well to diverse objects and integrates directly with hardware, requiring no additional training for real-world deployment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信