Mohamad Yousef Shaheen, Stefan Luding, Anthony R. Thornton, Thomas Weinhart
{"title":"增材制造中粉末熔化与聚并的热离散粒子模型","authors":"Mohamad Yousef Shaheen, Stefan Luding, Anthony R. Thornton, Thomas Weinhart","doi":"10.1007/s10035-025-01581-0","DOIUrl":null,"url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF) is an additive manufacturing technique that utilizes laser-induced melting of specific regions within a powder layer to create complex parts. Achieving high-quality products in LPBF requires the optimization of process parameters based on the unique characteristics of the powder material. Since experimental optimisation can be both time-consuming and costly, we propose a computational model capable of simulating the particle micro-mechanics in LPBF, offering a more cost-effective solution.</p><p>We have developed a novel thermal discrete particle and contact model that accurately captures the essential phenomena of melting, coalescence, and consolidation within LPBF. Our model assumes that solid particles partially melt under the influence of heat, subsequently coalesce, and form solid bonds during the cooling phase. The rate of coalescence is determined by the material’s surface tension and viscosity as it undergoes melting. To account for phase transitions, we employ an apparent heat capacity method. We first introduce our contact model and provide verification against analytical solutions for a two-particle system. We then demonstrate the efficacy of our model by applying it to a multi-particle example, successfully capturing the coalescence and consolidation behaviour observed in LPBF. The model has been implemented in the open-source code MercuryDPM. The current model is developed for polymer material, but it can be extended to metal and ceramic.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Thermal Discrete Particle Model of Particle melting and Coalescence</p></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-025-01581-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermal discrete particle model of powder melting and coalescence in additive manufacturing\",\"authors\":\"Mohamad Yousef Shaheen, Stefan Luding, Anthony R. Thornton, Thomas Weinhart\",\"doi\":\"10.1007/s10035-025-01581-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser powder bed fusion (LPBF) is an additive manufacturing technique that utilizes laser-induced melting of specific regions within a powder layer to create complex parts. Achieving high-quality products in LPBF requires the optimization of process parameters based on the unique characteristics of the powder material. Since experimental optimisation can be both time-consuming and costly, we propose a computational model capable of simulating the particle micro-mechanics in LPBF, offering a more cost-effective solution.</p><p>We have developed a novel thermal discrete particle and contact model that accurately captures the essential phenomena of melting, coalescence, and consolidation within LPBF. Our model assumes that solid particles partially melt under the influence of heat, subsequently coalesce, and form solid bonds during the cooling phase. The rate of coalescence is determined by the material’s surface tension and viscosity as it undergoes melting. To account for phase transitions, we employ an apparent heat capacity method. We first introduce our contact model and provide verification against analytical solutions for a two-particle system. We then demonstrate the efficacy of our model by applying it to a multi-particle example, successfully capturing the coalescence and consolidation behaviour observed in LPBF. The model has been implemented in the open-source code MercuryDPM. The current model is developed for polymer material, but it can be extended to metal and ceramic.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Thermal Discrete Particle Model of Particle melting and Coalescence</p></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-025-01581-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-025-01581-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01581-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal discrete particle model of powder melting and coalescence in additive manufacturing
Laser powder bed fusion (LPBF) is an additive manufacturing technique that utilizes laser-induced melting of specific regions within a powder layer to create complex parts. Achieving high-quality products in LPBF requires the optimization of process parameters based on the unique characteristics of the powder material. Since experimental optimisation can be both time-consuming and costly, we propose a computational model capable of simulating the particle micro-mechanics in LPBF, offering a more cost-effective solution.
We have developed a novel thermal discrete particle and contact model that accurately captures the essential phenomena of melting, coalescence, and consolidation within LPBF. Our model assumes that solid particles partially melt under the influence of heat, subsequently coalesce, and form solid bonds during the cooling phase. The rate of coalescence is determined by the material’s surface tension and viscosity as it undergoes melting. To account for phase transitions, we employ an apparent heat capacity method. We first introduce our contact model and provide verification against analytical solutions for a two-particle system. We then demonstrate the efficacy of our model by applying it to a multi-particle example, successfully capturing the coalescence and consolidation behaviour observed in LPBF. The model has been implemented in the open-source code MercuryDPM. The current model is developed for polymer material, but it can be extended to metal and ceramic.
Graphical Abstract
Thermal Discrete Particle Model of Particle melting and Coalescence
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.