对双链接mof的战略推动:氢和氧析反应的高效电催化剂

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-08 DOI:10.1039/D5RA06407D
Junaid Khan, Anique Ahmed and Abdullah A. Al-Kahtani
{"title":"对双链接mof的战略推动:氢和氧析反应的高效电催化剂","authors":"Junaid Khan, Anique Ahmed and Abdullah A. Al-Kahtani","doi":"10.1039/D5RA06407D","DOIUrl":null,"url":null,"abstract":"<p >This study demonstrates a transformative advance in electrocatalyst design through the strategic integration of bifunctional linkers in copper-based MOFs for overall water splitting. By engineering a dual-linker architecture incorporating 1,2,4,5-benzenetetracarboxylic acid (H<small><sub>4</sub></small>BTEC) and 2-methylimidazole (2-MIM), we have developed a Cu-MOF electrode that simultaneously overcomes the fundamental limitations of conductivity, kinetics, and stability that plague conventional single-linker systems. Comprehensive electrochemical characterization revealed exceptional bifunctional performance: an overpotential of just 234.7 mV for HER and 169.8 mV for OER, substantially outperforming single-component analogues (H<small><sub>4</sub></small>BTEC-MOF: 288.5 mV HER, 291.0 mV OER; 2-MIM-MOF: 298.1 mV HER, 386.5 mV OER). Kinetic superiority was evidenced by record-low Tafel slopes (18.1 mV per dec HER; 71.6 mV per dec OER) and a four-fold reduction in charge-transfer resistance (1.1 Ω <em>vs.</em> 2.6–3.2 Ω). The hierarchical porous structure, confirmed by morphological and structural analyses, facilitates efficient mass transport and exposes abundant active sites. This molecular engineering strategy effectively resolves the classic trade-off between conductivity, kinetics, and stability in electrocatalysis, establishing a new paradigm for designing non-precious metal electrocatalysts for sustainable hydrogen production.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 44","pages":" 37361-37370"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra06407d?page=search","citationCount":"0","resultStr":"{\"title\":\"Strategic drive toward bi-linker MOFs: an efficient electrocatalyst for hydrogen and oxygen evolution reactions\",\"authors\":\"Junaid Khan, Anique Ahmed and Abdullah A. Al-Kahtani\",\"doi\":\"10.1039/D5RA06407D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study demonstrates a transformative advance in electrocatalyst design through the strategic integration of bifunctional linkers in copper-based MOFs for overall water splitting. By engineering a dual-linker architecture incorporating 1,2,4,5-benzenetetracarboxylic acid (H<small><sub>4</sub></small>BTEC) and 2-methylimidazole (2-MIM), we have developed a Cu-MOF electrode that simultaneously overcomes the fundamental limitations of conductivity, kinetics, and stability that plague conventional single-linker systems. Comprehensive electrochemical characterization revealed exceptional bifunctional performance: an overpotential of just 234.7 mV for HER and 169.8 mV for OER, substantially outperforming single-component analogues (H<small><sub>4</sub></small>BTEC-MOF: 288.5 mV HER, 291.0 mV OER; 2-MIM-MOF: 298.1 mV HER, 386.5 mV OER). Kinetic superiority was evidenced by record-low Tafel slopes (18.1 mV per dec HER; 71.6 mV per dec OER) and a four-fold reduction in charge-transfer resistance (1.1 Ω <em>vs.</em> 2.6–3.2 Ω). The hierarchical porous structure, confirmed by morphological and structural analyses, facilitates efficient mass transport and exposes abundant active sites. This molecular engineering strategy effectively resolves the classic trade-off between conductivity, kinetics, and stability in electrocatalysis, establishing a new paradigm for designing non-precious metal electrocatalysts for sustainable hydrogen production.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 44\",\"pages\":\" 37361-37370\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra06407d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra06407d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra06407d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该研究通过在铜基mof中战略性集成双功能连接剂来实现整体水分解,证明了电催化剂设计的革命性进步。通过设计包含1,2,4,5-苯四羧酸(H4BTEC)和2-甲基咪唑(2- mim)的双连接结构,我们开发了一种Cu-MOF电极,同时克服了困扰传统单连接系统的电导率,动力学和稳定性的基本限制。综合电化学表征显示了优异的双功能性能:HER过电位仅为234.7 mV, OER过电位为169.8 mV,大大优于单组分类似物(H4BTEC-MOF: 288.5 mV HER, 291.0 mV OER; 2-MIM-MOF: 298.1 mV HER, 386.5 mV OER)。动力学优势证明了创纪录的低塔菲尔斜率(18.1 mV / dec HER; 71.6 mV / dec OER)和四倍的电荷转移电阻降低(1.1 Ω vs. 2.6-3.2 Ω)。形态和结构分析证实了层次化的多孔结构有利于有效的物质运输,并暴露出丰富的活性位点。这种分子工程策略有效地解决了电催化中传导性、动力学和稳定性之间的传统权衡,为设计用于可持续制氢的非贵金属电催化剂建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strategic drive toward bi-linker MOFs: an efficient electrocatalyst for hydrogen and oxygen evolution reactions

Strategic drive toward bi-linker MOFs: an efficient electrocatalyst for hydrogen and oxygen evolution reactions

This study demonstrates a transformative advance in electrocatalyst design through the strategic integration of bifunctional linkers in copper-based MOFs for overall water splitting. By engineering a dual-linker architecture incorporating 1,2,4,5-benzenetetracarboxylic acid (H4BTEC) and 2-methylimidazole (2-MIM), we have developed a Cu-MOF electrode that simultaneously overcomes the fundamental limitations of conductivity, kinetics, and stability that plague conventional single-linker systems. Comprehensive electrochemical characterization revealed exceptional bifunctional performance: an overpotential of just 234.7 mV for HER and 169.8 mV for OER, substantially outperforming single-component analogues (H4BTEC-MOF: 288.5 mV HER, 291.0 mV OER; 2-MIM-MOF: 298.1 mV HER, 386.5 mV OER). Kinetic superiority was evidenced by record-low Tafel slopes (18.1 mV per dec HER; 71.6 mV per dec OER) and a four-fold reduction in charge-transfer resistance (1.1 Ω vs. 2.6–3.2 Ω). The hierarchical porous structure, confirmed by morphological and structural analyses, facilitates efficient mass transport and exposes abundant active sites. This molecular engineering strategy effectively resolves the classic trade-off between conductivity, kinetics, and stability in electrocatalysis, establishing a new paradigm for designing non-precious metal electrocatalysts for sustainable hydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信