突破β-Ga2O3中p型掺杂势垒:具有高增益、高击穿和射频性能的gan基异质结双极晶体管

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-08 DOI:10.1039/D5RA07197F
Phuc Hong Than, Tho Quang Than and Yasushi Takaki
{"title":"突破β-Ga2O3中p型掺杂势垒:具有高增益、高击穿和射频性能的gan基异质结双极晶体管","authors":"Phuc Hong Than, Tho Quang Than and Yasushi Takaki","doi":"10.1039/D5RA07197F","DOIUrl":null,"url":null,"abstract":"<p >Despite extensive research on unipolar β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> semiconductor devices, the advancement of bipolar devices, particularly heterojunction bipolar transistors (HBTs), has been significantly hindered by the lack of reliable p-type doping in β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>. In this paper, we present the first comprehensive simulation study of a functional HBT based on an n-type β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> emitter, a p-type GaN base, and an n-type GaN collector, aiming to address the critical challenge of p-type doping in β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> for bipolar devices. The proposed Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>/GaN HBT, simulated with full consideration of traps, exhibits a maximum DC current gain (<em>β</em><small><sub>DC</sub></small>) of 18.3, a high collector current density (<em>J</em><small><sub>C</sub></small>) of 14.3 kA cm<small><sup>−2</sup></small>, a collector–base breakdown voltage (BV<small><sub>CBO</sub></small>) of 120 V, a power figure of merit (PFOM) of 41.3 MW cm<small><sup>−2</sup></small>, and a low specific on-resistance (<em>R</em><small><sub>on,sp</sub></small>) of 0.35 mΩ cm<small><sup>2</sup></small>. The temperature-dependent current–voltage (<em>I</em>–<em>V</em>) characteristics from 300 K to 460 K reveal stable operation up to 460 K, albeit with a 31.1% reduction in <em>β</em><small><sub>DC</sub></small> and a 30.0% decline in PFOM due to carrier mobility degradation and enhanced recombination. Furthermore, device performance was optimized by engineering the base and collector thicknesses. The results indicate that a thin base (0.05 μm) maximizes <em>β</em><small><sub>DC</sub></small>, while a thick collector (2.0 μm) boosts PFOM to 138 MW cm<small><sup>−2</sup></small> without compromising gain. In addition, high-frequency simulations show a cutoff frequency (<em>f</em><small><sub>T</sub></small>) of 30 GHz at 300 K, confirming the device's suitability for RF and power-switching applications. These results indicate that the Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>/GaN HBT is a promising candidate for next-generation power electronics, owing to its unique combination of high breakdown voltage and excellent frequency performance.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 44","pages":" 37518-37531"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra07197f?page=search","citationCount":"0","resultStr":"{\"title\":\"Breaking the p-type doping barrier in β-Ga2O3: a GaN-based heterojunction bipolar transistor with high gain, high breakdown, and RF capability\",\"authors\":\"Phuc Hong Than, Tho Quang Than and Yasushi Takaki\",\"doi\":\"10.1039/D5RA07197F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Despite extensive research on unipolar β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> semiconductor devices, the advancement of bipolar devices, particularly heterojunction bipolar transistors (HBTs), has been significantly hindered by the lack of reliable p-type doping in β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>. In this paper, we present the first comprehensive simulation study of a functional HBT based on an n-type β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> emitter, a p-type GaN base, and an n-type GaN collector, aiming to address the critical challenge of p-type doping in β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> for bipolar devices. The proposed Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>/GaN HBT, simulated with full consideration of traps, exhibits a maximum DC current gain (<em>β</em><small><sub>DC</sub></small>) of 18.3, a high collector current density (<em>J</em><small><sub>C</sub></small>) of 14.3 kA cm<small><sup>−2</sup></small>, a collector–base breakdown voltage (BV<small><sub>CBO</sub></small>) of 120 V, a power figure of merit (PFOM) of 41.3 MW cm<small><sup>−2</sup></small>, and a low specific on-resistance (<em>R</em><small><sub>on,sp</sub></small>) of 0.35 mΩ cm<small><sup>2</sup></small>. The temperature-dependent current–voltage (<em>I</em>–<em>V</em>) characteristics from 300 K to 460 K reveal stable operation up to 460 K, albeit with a 31.1% reduction in <em>β</em><small><sub>DC</sub></small> and a 30.0% decline in PFOM due to carrier mobility degradation and enhanced recombination. Furthermore, device performance was optimized by engineering the base and collector thicknesses. The results indicate that a thin base (0.05 μm) maximizes <em>β</em><small><sub>DC</sub></small>, while a thick collector (2.0 μm) boosts PFOM to 138 MW cm<small><sup>−2</sup></small> without compromising gain. In addition, high-frequency simulations show a cutoff frequency (<em>f</em><small><sub>T</sub></small>) of 30 GHz at 300 K, confirming the device's suitability for RF and power-switching applications. These results indicate that the Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>/GaN HBT is a promising candidate for next-generation power electronics, owing to its unique combination of high breakdown voltage and excellent frequency performance.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 44\",\"pages\":\" 37518-37531\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra07197f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra07197f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra07197f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管对单极β-Ga2O3半导体器件进行了广泛的研究,但由于β-Ga2O3中缺乏可靠的p型掺杂,双极器件,特别是异质结双极晶体管(HBTs)的发展受到了很大的阻碍。在本文中,我们首次对基于n型β-Ga2O3发射极、p型GaN基底和n型GaN集电极的功能HBT进行了全面的模拟研究,旨在解决双极器件中p型掺杂β-Ga2O3的关键挑战。在充分考虑陷阱的情况下,所提出的Ga2O3/GaN HBT的最大直流电流增益(βDC)为18.3,集电极电流密度(JC)为14.3 kA cm - 2,集电极基极击穿电压(BVCBO)为120 V,功率优值(PFOM)为41.3 MW cm - 2,低比导通电阻(Ron,sp)为0.35 mΩ cm2。从300 K到460 K的温度依赖的电流-电压(I-V)特性表明,尽管由于载流子迁移率下降和重组增强,βDC降低了31.1%,PFOM下降了30.0%,但在460 K下仍能稳定工作。此外,通过设计基板和集电极的厚度,优化了器件的性能。结果表明,薄基底(0.05 μm)可使βDC最大化,而厚集电极(2.0 μm)可在不影响增益的情况下将PFOM提高到138 MW cm−2。此外,高频模拟显示,在300 K时的截止频率(fT)为30 GHz,证实了该器件适用于射频和功率开关应用。这些结果表明,由于其独特的高击穿电压和优异的频率性能,Ga2O3/GaN HBT是下一代电力电子器件的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Breaking the p-type doping barrier in β-Ga2O3: a GaN-based heterojunction bipolar transistor with high gain, high breakdown, and RF capability

Breaking the p-type doping barrier in β-Ga2O3: a GaN-based heterojunction bipolar transistor with high gain, high breakdown, and RF capability

Despite extensive research on unipolar β-Ga2O3 semiconductor devices, the advancement of bipolar devices, particularly heterojunction bipolar transistors (HBTs), has been significantly hindered by the lack of reliable p-type doping in β-Ga2O3. In this paper, we present the first comprehensive simulation study of a functional HBT based on an n-type β-Ga2O3 emitter, a p-type GaN base, and an n-type GaN collector, aiming to address the critical challenge of p-type doping in β-Ga2O3 for bipolar devices. The proposed Ga2O3/GaN HBT, simulated with full consideration of traps, exhibits a maximum DC current gain (βDC) of 18.3, a high collector current density (JC) of 14.3 kA cm−2, a collector–base breakdown voltage (BVCBO) of 120 V, a power figure of merit (PFOM) of 41.3 MW cm−2, and a low specific on-resistance (Ron,sp) of 0.35 mΩ cm2. The temperature-dependent current–voltage (IV) characteristics from 300 K to 460 K reveal stable operation up to 460 K, albeit with a 31.1% reduction in βDC and a 30.0% decline in PFOM due to carrier mobility degradation and enhanced recombination. Furthermore, device performance was optimized by engineering the base and collector thicknesses. The results indicate that a thin base (0.05 μm) maximizes βDC, while a thick collector (2.0 μm) boosts PFOM to 138 MW cm−2 without compromising gain. In addition, high-frequency simulations show a cutoff frequency (fT) of 30 GHz at 300 K, confirming the device's suitability for RF and power-switching applications. These results indicate that the Ga2O3/GaN HBT is a promising candidate for next-generation power electronics, owing to its unique combination of high breakdown voltage and excellent frequency performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信