{"title":"网格成型VSCs内控制回路阻尼效应研究","authors":"Liang Zhao;Xiongfei Wang;Zheming Jin","doi":"10.1109/OJPEL.2025.3614708","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical framework to evaluate the damping contributed by inner control loops in grid-forming voltage-source converters. First, an impedance model is developed to characterize the dynamics of three types of inner loops, with the control-shaped resistive component indicating the damping for synchronous oscillations. Then, inner-outer loop interactions and interaction-induced oscillations are evaluated using the complex torque coefficient, with the damping torque used for stability assessment. The framework offers two benefits: (i) it yields intuitive physical insight into inner-outer loop interactions and oscillation mechanisms; and (ii) it enables inner-loop parameter tuning using electrical damping torque with minimal dependence on outer-loop operating points. The method is exemplified for virtual-admittance and current-control inner loops, where both synchronous and sub-synchronous oscillations are analyzed and mitigated. Time-domain simulations and hardware experiments validate the approach and its findings.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1595-1608"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11181165","citationCount":"0","resultStr":"{\"title\":\"Exploring Damping Effect of Inner Control Loops for Grid-Forming VSCs\",\"authors\":\"Liang Zhao;Xiongfei Wang;Zheming Jin\",\"doi\":\"10.1109/OJPEL.2025.3614708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analytical framework to evaluate the damping contributed by inner control loops in grid-forming voltage-source converters. First, an impedance model is developed to characterize the dynamics of three types of inner loops, with the control-shaped resistive component indicating the damping for synchronous oscillations. Then, inner-outer loop interactions and interaction-induced oscillations are evaluated using the complex torque coefficient, with the damping torque used for stability assessment. The framework offers two benefits: (i) it yields intuitive physical insight into inner-outer loop interactions and oscillation mechanisms; and (ii) it enables inner-loop parameter tuning using electrical damping torque with minimal dependence on outer-loop operating points. The method is exemplified for virtual-admittance and current-control inner loops, where both synchronous and sub-synchronous oscillations are analyzed and mitigated. Time-domain simulations and hardware experiments validate the approach and its findings.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":\"6 \",\"pages\":\"1595-1608\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11181165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11181165/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11181165/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Exploring Damping Effect of Inner Control Loops for Grid-Forming VSCs
This paper presents an analytical framework to evaluate the damping contributed by inner control loops in grid-forming voltage-source converters. First, an impedance model is developed to characterize the dynamics of three types of inner loops, with the control-shaped resistive component indicating the damping for synchronous oscillations. Then, inner-outer loop interactions and interaction-induced oscillations are evaluated using the complex torque coefficient, with the damping torque used for stability assessment. The framework offers two benefits: (i) it yields intuitive physical insight into inner-outer loop interactions and oscillation mechanisms; and (ii) it enables inner-loop parameter tuning using electrical damping torque with minimal dependence on outer-loop operating points. The method is exemplified for virtual-admittance and current-control inner loops, where both synchronous and sub-synchronous oscillations are analyzed and mitigated. Time-domain simulations and hardware experiments validate the approach and its findings.