超越局部事件:基于层次运动聚合的循环光流估计

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Daikun Liu;Teng Wang;Changyin Sun
{"title":"超越局部事件:基于层次运动聚合的循环光流估计","authors":"Daikun Liu;Teng Wang;Changyin Sun","doi":"10.1109/LRA.2025.3617737","DOIUrl":null,"url":null,"abstract":"Current event-based optical flow estimation methods typically utilize at most two event streams as input, overlooking the role of temporal coherence present in continuous event streams for the current motion estimation. Moreover, existing simple motion propagation strategies are insufficient for propagating historical motion information effectively. To this end, we propose TREFlow, a recurrent event-based optical flow estimation framework with hierarchical motion aggregation. Our method aggregates rich motion features in a short-to-long-term manner. We introduce a Short-Term Motion Encoding (STME) module and a Long-Term Memory Aggregation (LTMA) module to capture dense motion features within the current temporal window and comprehensively incorporate historical motion prior knowledge, respectively, thereby enhancing and compensating the current motion representation. Our method outperforms other methods in optical flow inference on MVSEC and DSEC-Flow.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 11","pages":"11721-11728"},"PeriodicalIF":5.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeing Beyond Local Events: Recurrent Optical Flow Estimation With Hierarchical Motion Aggregation\",\"authors\":\"Daikun Liu;Teng Wang;Changyin Sun\",\"doi\":\"10.1109/LRA.2025.3617737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current event-based optical flow estimation methods typically utilize at most two event streams as input, overlooking the role of temporal coherence present in continuous event streams for the current motion estimation. Moreover, existing simple motion propagation strategies are insufficient for propagating historical motion information effectively. To this end, we propose TREFlow, a recurrent event-based optical flow estimation framework with hierarchical motion aggregation. Our method aggregates rich motion features in a short-to-long-term manner. We introduce a Short-Term Motion Encoding (STME) module and a Long-Term Memory Aggregation (LTMA) module to capture dense motion features within the current temporal window and comprehensively incorporate historical motion prior knowledge, respectively, thereby enhancing and compensating the current motion representation. Our method outperforms other methods in optical flow inference on MVSEC and DSEC-Flow.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 11\",\"pages\":\"11721-11728\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11192598/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11192598/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

当前基于事件的光流估计方法通常最多使用两个事件流作为输入,忽略了连续事件流中存在的时间相干性在当前运动估计中的作用。此外,现有的简单运动传播策略不足以有效传播历史运动信息。为此,我们提出了TREFlow,一个基于循环事件的分层运动聚合光流估计框架。我们的方法以短期到长期的方式聚合了丰富的运动特征。我们引入短期运动编码(STME)模块和长期记忆聚合(LTMA)模块,分别捕获当前时间窗口内的密集运动特征,并综合考虑历史运动先验知识,从而增强和补偿当前运动表征。该方法在MVSEC和DSEC-Flow光流推断方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seeing Beyond Local Events: Recurrent Optical Flow Estimation With Hierarchical Motion Aggregation
Current event-based optical flow estimation methods typically utilize at most two event streams as input, overlooking the role of temporal coherence present in continuous event streams for the current motion estimation. Moreover, existing simple motion propagation strategies are insufficient for propagating historical motion information effectively. To this end, we propose TREFlow, a recurrent event-based optical flow estimation framework with hierarchical motion aggregation. Our method aggregates rich motion features in a short-to-long-term manner. We introduce a Short-Term Motion Encoding (STME) module and a Long-Term Memory Aggregation (LTMA) module to capture dense motion features within the current temporal window and comprehensively incorporate historical motion prior knowledge, respectively, thereby enhancing and compensating the current motion representation. Our method outperforms other methods in optical flow inference on MVSEC and DSEC-Flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信