一种用于鲁棒WMMSE预编码的轻量级rl驱动深度展开网络

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
Kexuan Wang;An Liu
{"title":"一种用于鲁棒WMMSE预编码的轻量级rl驱动深度展开网络","authors":"Kexuan Wang;An Liu","doi":"10.1109/LCOMM.2025.3600648","DOIUrl":null,"url":null,"abstract":"Weighted Minimum Mean Square Error (WMMSE) precoding can achieve near-optimal weighted sum rate (WSR) in MU-MIMO-OFDM systems, but it suffers from high computational complexity and severe dependence on accurate channel state information (CSI). This letter proposes a lightweight reinforcement learning (RL)-driven deep unfolding (DU) network (RLDDU-Net) to overcome these limitations. Specifically, its DU module maps a wideband stochastic WMMSE algorithm, which maximizes the ergodic WSR under imperfect CSI, into a deep-learning framework. Approximation techniques exploiting beam-domain sparsity and subcarrier correlation are also adopted to significantly reduce complexity and accelerate convergence. The RL module dynamically generates compensation matrices to mitigate approximation errors and adjusts DU network depth online, thereby enhancing both flexibility and performance. Simulation results demonstrate that RLDDU-Net outperforms existing baselines in terms of ergodic WSR, computational efficiency, and convergence speed under imperfect CSI.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 10","pages":"2471-2475"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight RL-Driven Deep Unfolding Network for Robust WMMSE Precoding\",\"authors\":\"Kexuan Wang;An Liu\",\"doi\":\"10.1109/LCOMM.2025.3600648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weighted Minimum Mean Square Error (WMMSE) precoding can achieve near-optimal weighted sum rate (WSR) in MU-MIMO-OFDM systems, but it suffers from high computational complexity and severe dependence on accurate channel state information (CSI). This letter proposes a lightweight reinforcement learning (RL)-driven deep unfolding (DU) network (RLDDU-Net) to overcome these limitations. Specifically, its DU module maps a wideband stochastic WMMSE algorithm, which maximizes the ergodic WSR under imperfect CSI, into a deep-learning framework. Approximation techniques exploiting beam-domain sparsity and subcarrier correlation are also adopted to significantly reduce complexity and accelerate convergence. The RL module dynamically generates compensation matrices to mitigate approximation errors and adjusts DU network depth online, thereby enhancing both flexibility and performance. Simulation results demonstrate that RLDDU-Net outperforms existing baselines in terms of ergodic WSR, computational efficiency, and convergence speed under imperfect CSI.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 10\",\"pages\":\"2471-2475\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11143219/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11143219/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

加权最小均方误差(WMMSE)预编码可以在MU-MIMO-OFDM系统中实现接近最优的加权和速率,但其计算复杂度高且严重依赖于准确的信道状态信息(CSI)。这封信提出了一个轻量级的强化学习(RL)驱动的深度展开(DU)网络(RLDDU-Net)来克服这些限制。具体而言,其DU模块将宽带随机WMMSE算法映射到深度学习框架中,该算法在不完全CSI下最大化遍历WMMSE。采用了利用波束域稀疏性和子载波相关的近似技术,大大降低了复杂度,加快了收敛速度。RL模块动态生成补偿矩阵以减小逼近误差并在线调整DU网络深度,从而提高灵活性和性能。仿真结果表明,RLDDU-Net在不完全CSI下的遍历WSR、计算效率和收敛速度都优于现有基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lightweight RL-Driven Deep Unfolding Network for Robust WMMSE Precoding
Weighted Minimum Mean Square Error (WMMSE) precoding can achieve near-optimal weighted sum rate (WSR) in MU-MIMO-OFDM systems, but it suffers from high computational complexity and severe dependence on accurate channel state information (CSI). This letter proposes a lightweight reinforcement learning (RL)-driven deep unfolding (DU) network (RLDDU-Net) to overcome these limitations. Specifically, its DU module maps a wideband stochastic WMMSE algorithm, which maximizes the ergodic WSR under imperfect CSI, into a deep-learning framework. Approximation techniques exploiting beam-domain sparsity and subcarrier correlation are also adopted to significantly reduce complexity and accelerate convergence. The RL module dynamically generates compensation matrices to mitigate approximation errors and adjusts DU network depth online, thereby enhancing both flexibility and performance. Simulation results demonstrate that RLDDU-Net outperforms existing baselines in terms of ergodic WSR, computational efficiency, and convergence speed under imperfect CSI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信