弹性量化及其对业务弹性的支持

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Ion Matei;Maksym Zhenirovskyy
{"title":"弹性量化及其对业务弹性的支持","authors":"Ion Matei;Maksym Zhenirovskyy","doi":"10.1109/LCSYS.2025.3593571","DOIUrl":null,"url":null,"abstract":"We present a method to quantify a system’s resilience capacity, i.e., the set of degradation magnitudes for which all functional requirements remain satisfied. These requirements come from human stakeholders (e.g., operators, planners) who define the acceptable performance envelope. By representing the resilience capacity in degradation space, we obtain an application-agnostic resilience metric (e.g., capacity volume). To approximate the capacity efficiently in high-dimensional spaces, we pair machine-learning classifiers with entropy-based active sampling, reducing costly feasibility tests. The learned model then drives diagnosis (current health estimation) and prognostics (health-state forecasting) that estimates useful life. These two steps can be complemented by a reconfiguration step implemented by human operators to prolong the system’s functionality. An illustrative case study, i.e., a manufacturing production line meeting weekly human set part demand, demonstrates the proposed workflow.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2285-2290"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience Quantification and Its Support for Operational Resilience\",\"authors\":\"Ion Matei;Maksym Zhenirovskyy\",\"doi\":\"10.1109/LCSYS.2025.3593571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method to quantify a system’s resilience capacity, i.e., the set of degradation magnitudes for which all functional requirements remain satisfied. These requirements come from human stakeholders (e.g., operators, planners) who define the acceptable performance envelope. By representing the resilience capacity in degradation space, we obtain an application-agnostic resilience metric (e.g., capacity volume). To approximate the capacity efficiently in high-dimensional spaces, we pair machine-learning classifiers with entropy-based active sampling, reducing costly feasibility tests. The learned model then drives diagnosis (current health estimation) and prognostics (health-state forecasting) that estimates useful life. These two steps can be complemented by a reconfiguration step implemented by human operators to prolong the system’s functionality. An illustrative case study, i.e., a manufacturing production line meeting weekly human set part demand, demonstrates the proposed workflow.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"2285-2290\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11099515/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11099515/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种量化系统弹性能力的方法,即所有功能需求保持满足的退化幅度集合。这些需求来自定义可接受性能范围的人类涉众(例如,操作人员、计划人员)。通过表示退化空间中的弹性容量,我们获得了与应用无关的弹性度量(例如容量体积)。为了在高维空间中有效地近似容量,我们将机器学习分类器与基于熵的主动采样配对,减少了昂贵的可行性测试。然后,学习到的模型驱动诊断(当前健康估计)和预测(健康状态预测)来估计使用寿命。这两个步骤可以通过人工操作人员实施的重新配置步骤来补充,以延长系统的功能。一个说明性的案例研究,即,一个制造生产线满足每周人工设置部件的需求,演示了所建议的工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilience Quantification and Its Support for Operational Resilience
We present a method to quantify a system’s resilience capacity, i.e., the set of degradation magnitudes for which all functional requirements remain satisfied. These requirements come from human stakeholders (e.g., operators, planners) who define the acceptable performance envelope. By representing the resilience capacity in degradation space, we obtain an application-agnostic resilience metric (e.g., capacity volume). To approximate the capacity efficiently in high-dimensional spaces, we pair machine-learning classifiers with entropy-based active sampling, reducing costly feasibility tests. The learned model then drives diagnosis (current health estimation) and prognostics (health-state forecasting) that estimates useful life. These two steps can be complemented by a reconfiguration step implemented by human operators to prolong the system’s functionality. An illustrative case study, i.e., a manufacturing production line meeting weekly human set part demand, demonstrates the proposed workflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信