具有领导者的高阶非均匀非线性多智能体团队的深度神经自适应滑模控制器

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Khushal Chaudhari;Krishanu Nath;Manas Kumar Bera
{"title":"具有领导者的高阶非均匀非线性多智能体团队的深度神经自适应滑模控制器","authors":"Khushal Chaudhari;Krishanu Nath;Manas Kumar Bera","doi":"10.1109/LCSYS.2025.3595174","DOIUrl":null,"url":null,"abstract":"This letter proposes a deep neural network (DNN)-based neuro-adaptive sliding mode control (SMC) strategy for leader-follower tracking in multi-agent systems with higher-order, heterogeneous, nonlinear, and unknown dynamics under external disturbances. The DNN is used to compensate the unknown nonlinear dynamics with higher accuracy than shallow neural networks (NNs) and SMC ensures robust tracking. This framework employs restricted potential functions within a set-theoretic paradigm to ensure system trajectories remain bounded within a compact set, improving robustness against approximation errors and external disturbances. The control scheme is grounded in non-smooth Lyapunov stability theory, with update laws derived for both inner and outer layer network weights of DNN. A numerical example is simulated that showcases the proposed controller’s effectiveness, adaptability, and robustness.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2297-2302"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Neuro-Adaptive Sliding Mode Controller for Higher-Order Heterogeneous Nonlinear Multi-Agent Teams With Leader\",\"authors\":\"Khushal Chaudhari;Krishanu Nath;Manas Kumar Bera\",\"doi\":\"10.1109/LCSYS.2025.3595174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a deep neural network (DNN)-based neuro-adaptive sliding mode control (SMC) strategy for leader-follower tracking in multi-agent systems with higher-order, heterogeneous, nonlinear, and unknown dynamics under external disturbances. The DNN is used to compensate the unknown nonlinear dynamics with higher accuracy than shallow neural networks (NNs) and SMC ensures robust tracking. This framework employs restricted potential functions within a set-theoretic paradigm to ensure system trajectories remain bounded within a compact set, improving robustness against approximation errors and external disturbances. The control scheme is grounded in non-smooth Lyapunov stability theory, with update laws derived for both inner and outer layer network weights of DNN. A numerical example is simulated that showcases the proposed controller’s effectiveness, adaptability, and robustness.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"2297-2302\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11111708/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11111708/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于深度神经网络(DNN)的神经自适应滑模控制(SMC)策略,用于在外部干扰下具有高阶,异构,非线性和未知动态的多智能体系统中的领导者-追随者跟踪。深度神经网络用于补偿未知的非线性动态,比浅神经网络具有更高的精度,而SMC保证了跟踪的鲁棒性。该框架在集合论范式中使用限制势函数,以确保系统轨迹在紧集中保持有界,提高对近似误差和外部干扰的鲁棒性。该控制方案基于非光滑Lyapunov稳定性理论,推导出DNN内层和外层网络权值的更新规律。仿真结果表明了该控制器的有效性、自适应性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neuro-Adaptive Sliding Mode Controller for Higher-Order Heterogeneous Nonlinear Multi-Agent Teams With Leader
This letter proposes a deep neural network (DNN)-based neuro-adaptive sliding mode control (SMC) strategy for leader-follower tracking in multi-agent systems with higher-order, heterogeneous, nonlinear, and unknown dynamics under external disturbances. The DNN is used to compensate the unknown nonlinear dynamics with higher accuracy than shallow neural networks (NNs) and SMC ensures robust tracking. This framework employs restricted potential functions within a set-theoretic paradigm to ensure system trajectories remain bounded within a compact set, improving robustness against approximation errors and external disturbances. The control scheme is grounded in non-smooth Lyapunov stability theory, with update laws derived for both inner and outer layer network weights of DNN. A numerical example is simulated that showcases the proposed controller’s effectiveness, adaptability, and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信