面向SLAM的开放词汇在线语义映射

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Tomas Berriel Martins;Martin R. Oswald;Javier Civera
{"title":"面向SLAM的开放词汇在线语义映射","authors":"Tomas Berriel Martins;Martin R. Oswald;Javier Civera","doi":"10.1109/LRA.2025.3617736","DOIUrl":null,"url":null,"abstract":"This letter presents an <underline>O</u>pen-<underline>V</u>ocabulary <underline>O</u>nline 3D semantic mapping pipeline, that we denote by its acronym OVO. Given a sequence of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors. These are computed from the viewpoints where they are observed by a novel CLIP merging method. Notably, our OVO has a significantly lower computational and memory footprint than offline baselines, while also showing better segmentation metrics than offline and online ones. Along with superior segmentation performance, we also show experimental results of our mapping contributions integrated with two different full SLAM backbones (Gaussian-SLAM and ORB-SLAM2), being the first ones using a neural network to merge CLIP descriptors and demonstrating end-to-end open-vocabulary online 3D mapping with loop closure.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 11","pages":"11745-11752"},"PeriodicalIF":5.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11192614","citationCount":"0","resultStr":"{\"title\":\"Open-Vocabulary Online Semantic Mapping for SLAM\",\"authors\":\"Tomas Berriel Martins;Martin R. Oswald;Javier Civera\",\"doi\":\"10.1109/LRA.2025.3617736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents an <underline>O</u>pen-<underline>V</u>ocabulary <underline>O</u>nline 3D semantic mapping pipeline, that we denote by its acronym OVO. Given a sequence of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors. These are computed from the viewpoints where they are observed by a novel CLIP merging method. Notably, our OVO has a significantly lower computational and memory footprint than offline baselines, while also showing better segmentation metrics than offline and online ones. Along with superior segmentation performance, we also show experimental results of our mapping contributions integrated with two different full SLAM backbones (Gaussian-SLAM and ORB-SLAM2), being the first ones using a neural network to merge CLIP descriptors and demonstrating end-to-end open-vocabulary online 3D mapping with loop closure.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 11\",\"pages\":\"11745-11752\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11192614\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11192614/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11192614/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一个开放词汇在线3D语义映射管道,我们用它的缩写OVO来表示。给定一系列的RGB-D帧,我们检测和跟踪3D片段,我们使用CLIP向量来描述。这些是通过一种新的CLIP合并方法从观察到的视点计算出来的。值得注意的是,我们的OVO比离线基线具有更低的计算和内存占用,同时也显示出比离线和在线更好的分割指标。除了优越的分割性能外,我们还展示了我们的映射贡献与两个不同的全SLAM主干(Gaussian-SLAM和ORB-SLAM2)集成的实验结果,这是第一个使用神经网络合并CLIP描述符并演示端到端的开放词汇在线3D映射与闭环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open-Vocabulary Online Semantic Mapping for SLAM
This letter presents an Open-Vocabulary Online 3D semantic mapping pipeline, that we denote by its acronym OVO. Given a sequence of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors. These are computed from the viewpoints where they are observed by a novel CLIP merging method. Notably, our OVO has a significantly lower computational and memory footprint than offline baselines, while also showing better segmentation metrics than offline and online ones. Along with superior segmentation performance, we also show experimental results of our mapping contributions integrated with two different full SLAM backbones (Gaussian-SLAM and ORB-SLAM2), being the first ones using a neural network to merge CLIP descriptors and demonstrating end-to-end open-vocabulary online 3D mapping with loop closure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信