CLIP- dqa V2:从片段级的角度探索CLIP去模糊图像质量评估

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yirui Zeng;Jun Fu;Guanghui Yue;Hantao Liu;Wei Zhou
{"title":"CLIP- dqa V2:从片段级的角度探索CLIP去模糊图像质量评估","authors":"Yirui Zeng;Jun Fu;Guanghui Yue;Hantao Liu;Wei Zhou","doi":"10.1109/LSP.2025.3615082","DOIUrl":null,"url":null,"abstract":"Contrastive Language-Image Pretraining (CLIP) models have demonstrated strong performance in blind dehazed image quality assessment (DQA), yet their efficiency remains a concern. In this letter, we introduce CLIP-DQA V2, which explores CLIP for efficient blind DQA from a fragment-level perspective. To effectively map fragments sampled from dehazed images to quality scores, CLIP-DQA V2 integrates two key components: (1) multi-modal prompt learning, which jointly optimizes CLIP’s image and text encoders for better alignment between fragments and quality-related text descriptions, and (2) a semantic consistency loss that alleviates the semantic degradation caused by fragment sampling. Experiments on two widely used benchmark datasets show that CLIP-DQA V2 reduces computational cost by nearly 45% compared to previous methods, while delivering more accurate quality predictions.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3829-3833"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLIP-DQA V2: Exploring CLIP for Dehazed Image Quality Assessment From a Fragment-Level Perspective\",\"authors\":\"Yirui Zeng;Jun Fu;Guanghui Yue;Hantao Liu;Wei Zhou\",\"doi\":\"10.1109/LSP.2025.3615082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contrastive Language-Image Pretraining (CLIP) models have demonstrated strong performance in blind dehazed image quality assessment (DQA), yet their efficiency remains a concern. In this letter, we introduce CLIP-DQA V2, which explores CLIP for efficient blind DQA from a fragment-level perspective. To effectively map fragments sampled from dehazed images to quality scores, CLIP-DQA V2 integrates two key components: (1) multi-modal prompt learning, which jointly optimizes CLIP’s image and text encoders for better alignment between fragments and quality-related text descriptions, and (2) a semantic consistency loss that alleviates the semantic degradation caused by fragment sampling. Experiments on two widely used benchmark datasets show that CLIP-DQA V2 reduces computational cost by nearly 45% compared to previous methods, while delivering more accurate quality predictions.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3829-3833\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11180895/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11180895/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对比语言-图像预训练(CLIP)模型在盲去雾图像质量评估(DQA)中表现优异,但其有效性仍然是一个值得关注的问题。在这封信中,我们介绍CLIP-DQA V2,它从片段级的角度探索CLIP进行有效的盲DQA。为了有效地将从去雾图像中采样的片段映射到质量分数,CLIP- dqa V2集成了两个关键组件:(1)多模态提示学习,它共同优化CLIP的图像和文本编码器,使片段和质量相关的文本描述更好地对齐;(2)语义一致性损失,减轻片段采样造成的语义退化。在两个广泛使用的基准数据集上进行的实验表明,CLIP-DQA V2与之前的方法相比,计算成本降低了近45%,同时提供了更准确的质量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLIP-DQA V2: Exploring CLIP for Dehazed Image Quality Assessment From a Fragment-Level Perspective
Contrastive Language-Image Pretraining (CLIP) models have demonstrated strong performance in blind dehazed image quality assessment (DQA), yet their efficiency remains a concern. In this letter, we introduce CLIP-DQA V2, which explores CLIP for efficient blind DQA from a fragment-level perspective. To effectively map fragments sampled from dehazed images to quality scores, CLIP-DQA V2 integrates two key components: (1) multi-modal prompt learning, which jointly optimizes CLIP’s image and text encoders for better alignment between fragments and quality-related text descriptions, and (2) a semantic consistency loss that alleviates the semantic degradation caused by fragment sampling. Experiments on two widely used benchmark datasets show that CLIP-DQA V2 reduces computational cost by nearly 45% compared to previous methods, while delivering more accurate quality predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信