面向角度区域自定义语音提取

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yi Yang;Caigen Zhou
{"title":"面向角度区域自定义语音提取","authors":"Yi Yang;Caigen Zhou","doi":"10.1109/LSP.2025.3613271","DOIUrl":null,"url":null,"abstract":"Most existing angular region-wise speech extraction methods face two critical limitations: inflexibility when handling different region boundaries, and performance degradation due to the varying numbers of speakers within the target regions. To address these issues, we adapt our recently proposed DPARNet, a lightweight dual-path attention and recurrent network for speech separation, into DPARNet-RSE, to perform angular region-customizable speech extraction. The key innovations include: (1) a boundary-conditioned attention module that encodes target boundaries into dynamic queries for robust region modeling; (2) a curriculum learning-based training approach that stabilizes convergence by progressively introducing data diversity; (3) a silence probability prediction module that directly triggers silent outputs when no target speaker is detected, effectively reducing speech and noise residuals in zero-target cases. The experimental results demonstrate its superior performance, robustness, generalization capability, and scalability in complex scenarios.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3779-3783"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DPARNet-RSE: Toward Angular Region-Customizable Speech Extraction\",\"authors\":\"Yi Yang;Caigen Zhou\",\"doi\":\"10.1109/LSP.2025.3613271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing angular region-wise speech extraction methods face two critical limitations: inflexibility when handling different region boundaries, and performance degradation due to the varying numbers of speakers within the target regions. To address these issues, we adapt our recently proposed DPARNet, a lightweight dual-path attention and recurrent network for speech separation, into DPARNet-RSE, to perform angular region-customizable speech extraction. The key innovations include: (1) a boundary-conditioned attention module that encodes target boundaries into dynamic queries for robust region modeling; (2) a curriculum learning-based training approach that stabilizes convergence by progressively introducing data diversity; (3) a silence probability prediction module that directly triggers silent outputs when no target speaker is detected, effectively reducing speech and noise residuals in zero-target cases. The experimental results demonstrate its superior performance, robustness, generalization capability, and scalability in complex scenarios.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3779-3783\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11175497/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11175497/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大多数现有的角区域智能语音提取方法面临两个关键的局限性:在处理不同区域边界时缺乏灵活性,以及由于目标区域内说话者数量的变化而导致性能下降。为了解决这些问题,我们将最近提出的用于语音分离的轻量级双路径关注循环网络DPARNet改编为DPARNet- rse,以执行角度区域可定制的语音提取。关键创新包括:(1)边界条件注意模块,该模块将目标边界编码为动态查询,用于鲁棒区域建模;(2)基于课程学习的训练方法,通过逐步引入数据多样性来稳定收敛性;(3)静音概率预测模块,在未检测到目标说话者时直接触发静音输出,有效降低零目标情况下的语音和噪声残留。实验结果表明,该方法具有较好的鲁棒性、泛化能力和复杂场景下的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DPARNet-RSE: Toward Angular Region-Customizable Speech Extraction
Most existing angular region-wise speech extraction methods face two critical limitations: inflexibility when handling different region boundaries, and performance degradation due to the varying numbers of speakers within the target regions. To address these issues, we adapt our recently proposed DPARNet, a lightweight dual-path attention and recurrent network for speech separation, into DPARNet-RSE, to perform angular region-customizable speech extraction. The key innovations include: (1) a boundary-conditioned attention module that encodes target boundaries into dynamic queries for robust region modeling; (2) a curriculum learning-based training approach that stabilizes convergence by progressively introducing data diversity; (3) a silence probability prediction module that directly triggers silent outputs when no target speaker is detected, effectively reducing speech and noise residuals in zero-target cases. The experimental results demonstrate its superior performance, robustness, generalization capability, and scalability in complex scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信